捷联惯导( Strapdown Inertial Navigation System, SINS)是一种现代导航技术,它将惯性测量单元(IMU)直接安装在飞行器或车辆上,连续地提供位置、速度和姿态信息。严恭敏老师的MATLAB仿真程序旨在帮助学习者深入理解捷联惯导算法和组合导航原理。下面,我们将详细探讨相关知识点。 一、捷联惯导系统的基本原理 1. 惯性测量单元(IMU):IMU包含加速度计和陀螺仪,用于测量物体的加速度和角速度。加速度计检测物体线性加速度,陀螺仪测量物体的旋转速率。 2. 基于牛顿第二定律和欧拉运动方程:通过IMU的数据,可以推算出物体的位置、速度和姿态变化。 二、捷联惯导算法 1. 数据融合:由于IMU存在误差,需要采用数据融合算法,如卡尔曼滤波,来校正和融合不同传感器的数据,提高导航精度。 2. 无漂移算法:包括零速度更新(ZUPT)、重力辅助更新等,用于减小加速度计的漂移误差。 3. 姿态解算:利用陀螺仪数据进行姿态更新,常见的有四元数法、欧拉角法等。 三、MATLAB仿真的重要性 1. 理论验证:通过MATLAB仿真,可以直观验证捷联惯导算法的正确性,理解其工作过程。 2. 参数敏感性分析:可以研究不同参数对系统性能的影响,优化算法设计。 3. 故障模拟:仿真可以帮助我们预估和处理传感器故障情况,提高系统的鲁棒性。 四、组合导航原理 1. 组合导航:结合多种导航系统(如GPS、磁罗盘、星光导航等),实现优势互补,提高整体导航性能。 2. 误差模型:理解和建立各种传感器的误差模型是组合导航的关键,这包括随机噪声、系统偏差等。 3. 信息融合:使用信息融合技术(如扩展卡尔曼滤波EKF)将不同传感器的数据有效结合。 五、MATLAB仿真程序的结构 严恭敏老师的MATLAB程序可能包含了以下模块: 1. 数据采集模块:模拟IMU输出,包含加速度和角速度信号。 2. 导航解算模块:执行惯性导航计算,包括位置、速度和姿态更新。 3. 数据融合模块:实现卡尔曼滤波或其他滤波算法,对传感器数据进行平滑处理。 4. 误差分析模块:评估和展示导航误差,分析系统性能。 5. 可视化模块:将仿真结果以图形方式展示,便于理解和分析。 通过这样的MATLAB仿真,学习者可以深入探究捷联惯导系统的动态行为,掌握核心算法,并提升在实际工程应用中的问题解决能力。同时,这个仿真环境也为教学和研究提供了宝贵的实践平台。
2024-11-29 19:34:04 67KB
1
该课程详细描述卡尔曼滤波所要解决的问题,并作为西工大考博的参考书!
2022-10-28 16:47:02 6.43MB 卡尔曼 导航
1
卡尔曼滤波 组合导航
2022-05-28 19:07:01 51.33MB 卡尔曼滤波算法 组合导航
1
捷联惯导算法与组合导航原理(教材)附录程序
2022-04-03 15:24:32 35.57MB 算法
1
3、递推线性最小方差估计——卡尔曼滤波 卡尔曼滤波的准则与线性最小方差估计相同 估值同样是量测值的线性函数 只要包括初始值在内的滤波器初值选择正确,它的估值也是无偏的 计算方法——递推形式
2022-03-28 08:47:03 1.35MB 卡尔曼滤波 组合导航
1
卡尔曼滤波与组合导航原理.rar包括Kalman滤波理论及其在导航系统中的应用高清pdf及卡尔曼滤波与组合导航原理完整PPT课件,以及部分代码程序实现。基于扩展卡尔曼滤波激光与雷达在信息融合下的数据处理程序。 Kalman滤波理论及其在导航系统中的应用(第2版)》紧密结合Kalman滤波理论在导航、制导与控制领域的应用,系统地介绍了Kalman滤波基础理论及最新发展。内容主要包括Kalman滤波基本理论、实用Kalman滤波技术、鲁棒自适应滤波、联邦Kalman滤波、基于小波分析的多尺度Kalman滤波和离散非线性系统滤波等。
2022-03-21 16:30:41 34.23MB 卡尔曼滤波 PPT 程序 PDF
1
卡尔曼滤波与组合导航原理[西工大出版秦永元].
2022-03-11 15:24:18 6.42MB 组合导航
1
《卡尔曼滤波与组合导航原理》是2012年西北工业大学出版社出版的图书,作者是秦永元、张洪钺、汪叔华。
2022-01-27 17:46:16 8.42MB 卡尔曼滤波
1
三、按最优状态估计线性化的卡尔曼滤波方程 ——广义(推广/扩展卡尔曼滤波方程) 问题、缺点 (1)标称解难解 (2)真轨迹与标称轨迹之间的状态差△X(t)或△Xk不能确保其足够小 或 值得注意的是 或 和 或 与前述的 不同 1、概述 为此,改用另一种近似方法,即采用围绕最优化状态估计 或 的线性化方法,现定义真轨迹与标称轨迹间的偏差为:
2021-12-24 14:09:15 1.35MB 卡尔曼滤波 组合导航
1
输出校正与反馈校正总结 从形式上看,输出校正仅仅校正系统的输出量,而反馈校正则是校正系统内部的状态。可以证明,两种校正方法的性质是一样的,具有同样的精度。 但是,输出校正的滤波器所估计的状态是未经校正的导航参数误差 ,而反馈校正的滤波器所估计的状态误差是经过校正的导航参数误差。前者数值大,后者数值小,而状态方程都是经过一阶近似的线性方程,状态的数值越小,则近似的准确性越高,因此,利用状态反馈校正的系统状态方程,更能接近真实地反映系统误差状态的动态过程。 故:对实际系统来讲,只要状态能够具体实施反馈校正,综合导航系统就可尽量采用反馈校正的滤波方案。
2021-12-06 15:22:50 1.35MB 卡尔曼滤波 组合导航
1