内容概要:本文详细介绍了利用Google Earth Engine (GEE) 进行Sentinel-2卫星数据处理与分类的全流程。首先,通过筛选特定区域(AOI)、时间范围和云覆盖度的数据,去除云层和阴影干扰,并计算云掩膜后的图像中值以提高质量。接着,对图像进行分割并选取关键波段和聚类信息,准备训练数据集,包括多种地表覆盖类型(如非正式定居点、植被、裸地、水体等)。然后,使用随机森林算法训练分类器,并对分割后的图像进行分类。此外,还进行了像素级别的分类作为对比。最后,将分类结果导出到Google Drive,并评估了模型的训练和验证精度。 适合人群:遥感数据分析人员、地理信息系统(GIS)从业者以及对地球观测数据处理感兴趣的科研人员和技术爱好者。 使用场景及目标:①掌握Sentinel-2数据的预处理方法,如去云、降噪等;②学习基于GEE平台的地物分类流程,包括样本准备、模型训练、结果评估等;③理解不同级别(对象级与像素级)分类的区别及其应用场景。 其他说明:本教程侧重于实际操作步骤,提供了完整的Python代码示例,帮助读者快速上手GEE平台上的遥感影像处理任务。同时,通过比较对象级和像素级分类的效果,可以更好地选择合适的分类方法。
1
内容概要:本文旨在分析慕尼黑特蕾西恩维斯地区在2023年和2024年不同时间段(包括 Oktoberfest 期间)的地表温度(LST),以研究城市热岛效应。文中通过 Landsat 9 和 Sentinel-2 卫星影像数据,利用 Split-Window 算法计算 LST,并进行归一化处理和差异分析。此外,还计算了 NDVI、NDBI、NDWI 和 Albedo 等指数,并进行了土地覆盖分类。为了提高分辨率,采用了随机森林算法对 LST 数据进行降尺度处理。最后,通过统计分析和散点图验证了降尺度结果的有效性。 适合人群:具备一定遥感和地理信息系统(GIS)基础知识的研究人员和技术人员,尤其是对城市热岛效应和地表温度分析感兴趣的学者。 使用场景及目标:①分析特定区域(如 Oktoberfest 场地)在不同时间段的地表温度变化;②评估城市热岛效应的影响;③通过降尺度技术提高 LST 数据的空间分辨率;④验证降尺度方法的准确性。 阅读建议:此资源涉及多种遥感数据处理技术和算法,建议读者在阅读时结合实际案例进行实践操作,并重点关注代码实现和结果验证部分。同时,建议读者熟悉 Python 或 JavaScript 编程语言,以及 Google Earth Engine 平台的基本操作。
2025-06-22 14:25:25 35KB 地理信息系统 机器学习
1
基于鸿蒙+TS实现算法:完全覆盖 编译软件为DevEco Studio 项目共分为四个界面: 加载界面:存在动态效果,设置定时器,自动跳转第二个界面。 题目描述:在页面上显示题目的详细内容,使得用户能够了解题目。 输入处理:包含样例提示,输入处理,算法实现,纠错设置(弹出弹窗)。将结果传输到结果页面,并自动跳转到下一个界面。 结果显示:接收数据,并一一展示,可以返回上一个界面。 代码注释齐全,逻辑清晰,能够应对课程设计,对小白学习鸿蒙+Ts也有许多帮助。 推荐下载。
2025-06-19 18:09:46 20.5MB harmonyos harmonyos
1
覆盖路径规划算法:自定义转折点在Matlab中的应用与优化,Matlab全覆盖路径规划算法:自定义转折点与优化策略,全覆盖路径规划 自定义转折点 Matlab路径规划算法 ,全覆盖路径规划; 自定义转折点; Matlab路径规划算法,Matlab全覆盖路径规划算法:自定义转折点 Matlab作为一个强大的数值计算和工程仿真软件,一直广泛应用于各种算法的研究与实现中。其中,路径规划算法作为计算机科学与机器人技术中的一个重要分支,近年来受到了越来越多的关注。全覆盖路径规划算法便是路径规划算法中的一种,它要求在满足一系列约束条件下,为移动体规划出一条从起点到终点,并覆盖所有目标区域的最优路径。这类算法在自动导航、无人机飞行路径规划、农业自动化等多个领域有着广泛的应用。 在传统的全覆盖路径规划算法中,通常会采用固定的转折点来进行路径的规划,但这往往难以满足复杂的实际需求,因此,自定义转折点的概念应运而生。通过在算法中引入自定义转折点,可以更好地控制路径的形状和方向,使得算法更具有灵活性和适用性。 Matlab环境为算法的开发和测试提供了一个理想的平台。在Matlab中实现自定义转折点的全覆盖路径规划算法,不仅可以利用Matlab强大的数值计算能力,还可以借助其丰富的工具箱,如Robotics System Toolbox,来进行路径规划算法的快速开发和验证。通过Matlab编写的脚本或函数,可以将算法的每一步计算过程可视化,便于理解算法的运行机制和调试问题。 针对全覆盖路径规划算法的研究和应用,本文档集合了一系列相关的文档和资料,详细介绍了算法的技术分析、实现方法、应用实践以及优化策略。文档中不仅对算法的原理进行了深入的探讨,还通过具体案例分析,展示了算法在实际问题中的应用效果。此外,文档还对算法的优化方法进行了总结,讨论了如何在保证路径全覆盖的前提下,提高路径的效率和安全性。 为了实现自定义转折点的全覆盖路径规划算法,研究者们需要在Matlab中进行大量的编程工作。这包括定义合适的数学模型,编写搜索最优转折点的算法,实现路径的生成和评估机制,以及考虑路径平滑性和动态障碍物避让等实际问题。此外,优化策略的引入也是提高算法性能的关键,包括但不限于启发式搜索、遗传算法、蚁群算法等智能优化方法的融合。 本系列文档还探讨了在全覆盖路径规划算法中如何合理地选择和使用自定义转折点,以及如何调整和优化算法参数来适应不同的应用场景。通过对比分析不同的算法变种,文档试图提供一种最佳的路径规划解决方案,以满足实际应用中对路径覆盖性和效率的需求。 通过对文档的研究,我们可以了解到,全覆盖路径规划算法的实现与优化是一个复杂而深入的过程。它不仅需要深厚的理论基础,还需要在实践中不断地测试和改进。自定义转折点的引入,无疑为路径规划提供了更多的可能性和更高的灵活性,使其更加贴合实际应用的需求。而Matlab作为一种科学计算的工具,为这一领域的研究提供了极大的便利和可能性。
2025-06-18 17:13:23 1.55MB 柔性数组
1
基于Matlab的扫地机器人全覆盖路径规划算法与动态仿真展示,Matlab路径规划算法在扫地机器人全覆盖路径规划中的应用:动态仿真与最终路线分析,全覆盖路径规划 Matlab路径规划算法 扫地机器人路径规划 动态仿真+最终路线 因代码具有可复制性,不 —————————————— ,核心关键词:全覆盖路径规划; Matlab路径规划算法; 扫地机器人; 动态仿真; 最终路线; 代码可复制性。,MvsNet深度学习三维重建全解:代码与训练自家数据集指南 在现代智能机器人领域,扫地机器人的研发已成为重要议题,其中路径规划作为核心问题之一,直接影响到机器人的清扫效率和覆盖率。本文旨在探讨基于Matlab的扫地机器人全覆盖路径规划算法,并通过动态仿真展示其应用效果以及最终规划路线的分析。 路径规划算法是机器人导航系统的关键组成部分,其目的在于实现机器人在复杂环境中的高效移动,以完成既定任务。全覆盖路径规划算法,顾名思义,是一种使机器人能够对覆盖区域进行无重复、高效的清扫或巡视的算法。而Matlab作为一款功能强大的数学计算软件,提供了丰富的工具箱和算法,非常适合用于算法的开发和仿真。 本文所讨论的Matlab路径规划算法,在扫地机器人的应用中,可以实现对清扫路径的最优规划。算法通过分析环境地图,根据房间的结构、家具的摆放等信息,计算出最佳的清扫路径,确保机器人能够高效地完成清洁任务。动态仿真则是将算法应用到虚拟环境中,通过模拟机器人的运动,来验证算法的可行性与效果。 在实施路径规划时,需要考虑的几个核心要素包括环境地图的构建、障碍物的识别与处理、清扫路径的生成以及路径的优化等。环境地图构建需依靠传感器技术,机器人通过传感器收集的数据来构建出工作区域的地图。障碍物的识别和处理是避免机器人在清扫过程中与障碍物发生碰撞,这通常需要借助传感器数据以及图像处理技术。清扫路径的生成是指算法根据地图和障碍物信息,规划出一条高效且合理的清扫路径。路径优化则是在清扫路径生成的基础上,进行进一步的优化,以缩短清扫时间,提高清扫效率。 动态仿真展示则是将上述路径规划算法放在仿真环境中,通过模拟机器人在各种环境下的清扫行为,来展示其覆盖效率和路径优化效果。这不仅可以直观地理解算法的应用效果,还可以在实际应用前对算法进行测试和优化,避免了在实际机器人上测试可能产生的风险和成本。 最终路线分析是对清扫过程中的路径进行后评价,通过分析清扫效率、清扫覆盖率等指标,评估算法的实用性。在本文中,会详细探讨算法在不同环境下的表现,以及如何根据仿真结果进行算法调整,以达到更好的清扫效果。 文章中提到的“代码可复制性”,意味着该路径规划算法不仅可以应用于扫地机器人,还可以广泛应用于其他需要路径规划的场合,如无人机航拍、自动驾驶车辆等。代码的复制与应用,降低了研发成本,加速了技术的传播和应用。 另外,本文还提到了MvsNet深度学习三维重建技术。尽管这并非文章的重点,但它是近年来非常热门的一个研究方向。MvsNet深度学习三维重建技术能够通过深度学习算法,快速准确地从二维图像中重建出三维模型,这对于路径规划而言,提供了一种全新的地图构建方式,能够进一步提高路径规划的准确性和效率。 基于Matlab的扫地机器人全覆盖路径规划算法,结合动态仿真技术,能够有效地提高清扫效率和覆盖率,为机器人在各种环境中提供高效、智能的清扫解决方案。随着技术的不断进步,路径规划算法将越来越智能化,为人们提供更为便捷和智能的生活体验。
2025-06-18 17:09:34 1.41MB
1
植被覆盖度( FVC)指植被(叶、茎、枝)在地面垂直投影面积占区域总面积比例。 像元二分模型计算:FVC=(NDVI - NDVI_soil)/(NDVI_veg - NDVI_soil) 式中,NDVI_soil为完全裸土或无植被覆盖区域NDVI值,NDVI_veg为完全被植被覆盖的像元NDVI值。累计百分比为5%时的NDVI值为NDVI_soil,累计百分比为95%时的NDVI值为NDVI_veg。
2025-06-15 17:33:19 1KB python 像元二分模型
1
在深入探讨给定文件的内容之前,我们首先需要明确几个关键概念。首先是“全覆盖算法”,其次是“牛耕法”,最后是“障碍物”对算法的影响。在本段文字中,我将尽量详细地解释这些概念,并尝试将这些知识点整合在一起,以此来生成一篇丰富的知识性文章。 全覆盖算法是一类旨在控制无人车辆、机器人或其他自动化设备进行覆盖作业的算法。这类算法的目标是在给定区域内实现高效、无遗漏的路径规划,使得设备可以在执行任务时覆盖到每一个指定的点。典型的全覆盖路径规划算法包括“扫地机器人算法”,“螺旋算法”等。牛耕法就是其中一种形象的说法,它将机器人或车辆的路径比作农民耕作时牛拉着犁的轨迹,即前后平行地移动,像耕地一样。 当我们在路径规划中引入障碍物的概念时,问题就变得更加复杂。障碍物是指在作业区域内无法通行的区域,例如障碍物可能是一棵树、一个池塘或其他不规则形状的物体。在有障碍物的情况下,全覆盖算法需要能够识别这些障碍并做出适当调整,以保证覆盖的连续性和完整性。这就要求算法具备一定的智能,能够在遇到障碍时进行有效的路径规划,避免重复覆盖覆盖区域或遗漏未覆盖区域。 在MATLAB这一强大的数学计算和仿真软件中,实现全覆盖算法的牛耕法,特别是在存在障碍物时,需要编写相应的代码来模拟路径规划。MATLAB代码可以实现这一过程的可视化,以便开发者和使用者更加直观地理解算法的执行效果。代码中可能会包括障碍物的定义、覆盖区域的初始化、路径规划的迭代过程等关键部分。此外,代码还应考虑到如何处理回退的情况,即在遇到障碍物时,系统能够指导机器人或车辆进行有效的回退操作,以达到覆盖整个区域的目的。 根据上述描述,我们可以得到一些核心的知识点。全覆盖算法牛耕法的核心在于它能够在复杂的环境中规划出一条最优路径。当存在障碍物时,算法需要具备决策能力,能够识别并避开这些障碍,同时确保在避障过程中仍能覆盖到必要的区域。在MATLAB环境下进行的仿真和代码编写,为这一算法的实现提供了一个良好的平台。通过模拟和可视化,用户可以更加直观地验证算法的有效性和准确性。此外,牛耕法因其简单直观而广受欢迎,尤其适用于矩形或平行边形状的区域。但在实际应用中,还需要进一步优化,以适应更加复杂的地形和障碍物分布。 通过上述分析,我们可以理解到,在编程实现全覆盖算法牛耕法时,需要考虑到算法设计的灵活性和鲁棒性,以适应不同环境下的需求。同时,MATLAB作为一种高效的计算工具,在算法测试和验证过程中发挥着关键作用。最终的目标是在保证高效率覆盖的同时,能够灵活应对各种突发状况,如障碍物的出现等。
2025-05-18 01:44:23 2KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-12 19:40:40 2.96MB matlab
1
牛耕式路径全覆盖算法,也称为牛耕算法或者蚂蚁算法,是一种用于解决路径规划问题的启发式算法。这个算法的灵感来自于牛在耕田时的行为。 在这个算法中,假设有一块田地需要耕作,牛从田地的某个角落开始行走,走过的路径会被标记。牛会优先选择尚未经过的路径,当所有的路径都走过后,算法停止。 牛耕式路径全覆盖算法是一种启发式算法,它从蚂蚁算法中获得灵感,模拟牛耕田的行为,从而解决路径规划问题。在这种算法中,牛(或代表牛的算法实体)从一个指定的起点开始,在一个假想的田地(代表搜索空间)中按照规则进行移动。在这个过程中,牛会尽量选择那些尚未走过的路径,直到所有的路径都被探索完毕。这一过程实际上是一个迭代的过程,算法通过不断选择未走过的路径,以期望找到一条覆盖所有区域的最佳路径。 牛耕式路径全覆盖算法在搜索空间的探索过程中,会保持对已经走过路径的记忆,这样可以有效避免重复访问已经搜索过的区域,从而提高搜索效率。这种方法特别适用于那些需要对一个区域进行全方位覆盖的场景,如田间耕作、扫地机器人路径规划等。 在实际应用中,牛耕式路径全覆盖算法会根据具体的场景设置一些参数,比如步长、转向概率等,这些参数会影响到搜索的效率和路径的质量。算法的效率和质量在很大程度上取决于这些参数的选择。 牛耕式路径全覆盖算法的优点在于其简单性和鲁棒性。由于算法结构简单,容易实现,并且不需要复杂的计算或者额外的信息。同时,它能在不同的搜索空间中都能表现出较好的适应性,尤其是在空间较大或者存在障碍物的情况下也能较好地工作。 尽管牛耕式路径全覆盖算法有其优点,但它同样存在一定的局限性。比如,算法可能无法保证在最短路径内完成覆盖,有时会产生较长的路径长度。此外,算法在面对大规模或者变化频繁的搜索空间时,可能会出现效率下降的问题。 在Matlab环境下,牛耕式路径全覆盖算法可以通过编写一系列的函数和脚本来实现。程序员需要定义田地的大小,设定算法的参数,以及设计算法的核心逻辑。Matlab的矩阵操作能力和丰富的函数库使得算法的实现变得相对简单和直观。通过Matlab的可视化工具,还能够直观地展示算法的搜索过程和覆盖结果。 此外,将牛耕式路径全覆盖算法与传统的路径规划方法如A*算法、Dijkstra算法进行比较,可以看出牛耕式算法在特定场景下具有其独特的优势,比如在处理大规模搜索空间或者搜索空间动态变化时,该算法能够提供一种可行的解决方案。 牛耕式路径全覆盖算法以其简单的实现机制和较强的适应性,在路径规划领域内占有一席之地。通过Matlab这一强大的计算和仿真平台,该算法的开发和应用可以得到进一步的推广和优化。
2025-05-11 19:57:23 2KB matlab
1
布尔表达式在软件测试中扮演着重要角色,特别是在验证逻辑条件和控制流方面。MC/DC(Multiple Condition Decision Coverage)覆盖是一种高效的测试覆盖率标准,它确保每个布尔逻辑条件的每种可能结果至少影响一次程序的决策路径。这种方法有助于发现由于条件组合错误导致的潜在缺陷。 布尔表达式通常由逻辑运算符(如AND、OR、NOT)连接的原子条件组成。例如,一个简单的布尔表达式可能是`A AND B OR NOT C`。在MC/DC覆盖中,我们关注的是每个条件(A、B、C)以及它们在表达式中的逻辑关系对决策结果的影响。 MC/DC覆盖准则有以下四个关键点: 1. **单个条件覆盖**:每个条件必须独立地被评估为真和假,以确保所有可能的结果都被考虑。 2. **条件独立性**:改变一个条件的值必须不改变其他条件的逻辑效果。 3. **决策结果覆盖**:每个决策(真或假)必须至少由一个测试用例触发。 4. **传播到下一层**:满足以上条件的测试用例还必须能够影响程序的后续流程。 为了实现MC/DC覆盖,我们可以采用以下步骤: 1. **条件分解**:将布尔表达式分解成其原子条件和操作符。 2. **变异条件**:对每个条件生成两种变异,即真和假。 3. **构造测试用例**:为每个条件的每种取值组合创建测试用例,确保满足决策覆盖。 4. **验证覆盖**:通过执行测试用例,检查是否达到MC/DC覆盖。 例如,对于`A AND B OR NOT C`这个表达式,我们需要以下测试用例: - `A=True, B=True, C=True`:验证`A AND B`为真且`NOT C`为假,使得整个表达式为真。 - `A=True, B=False, C=True`:验证`A AND B`为假且`NOT C`为假,使得整个表达式为假。 - `A=True, B=False, C=False`:验证`A AND B`为假且`NOT C`为真,使得整个表达式为真。 - `A=False, B=True, C=True`:验证`A AND B`为假且`NOT C`为假,使得整个表达式为假。 - `A=False, B=True, C=False`:验证`A AND B`为假且`NOT C`为真,使得整个表达式为真。 - `A=False, B=False, C=True`:验证`A AND B`为假且`NOT C`为真,使得整个表达式为真。 - `A=False, B=False, C=False`:验证`A AND B`为假且`NOT C`为假,使得整个表达式为假。 在这个过程中,`boolmute`可能是用于生成布尔表达式变异或帮助计算MC/DC覆盖的工具。它可能包含解析布尔表达式、生成变异表达式和评估覆盖的函数或脚本。使用这样的工具可以显著简化测试用例的创建过程,确保满足MC/DC覆盖标准,从而提高测试的有效性和软件的质量。
2025-05-11 17:43:58 37KB 布尔表达式
1