利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1
gabor分析matlab代码稀有 2012 (R2012) 稀有度是根据 1) 颜色和 2) Gabor 特征计算的。 该模型是“特征工程显着性模型”。 只需将它应用到您的图像中。 完整的论文可以在这里找到:。 如果您使用 R2012,请引用: @article{riche2013rare2012, title={Rare2012:基于多尺度稀有性的显着性检测及其比较统计分析},作者={Riche、Nicolas 和 Mancas、Matei 和 Duvinage、Matthieu 和 Mibulumukini、Makiese 和 Gosselin、Bernard 和 Dutoit , Thierry}, journal={Signal Processing: Image Communication}, volume={28}, number={6}, pages={642--658}, year={2013},publisher={Elsevier} } 怎么跑 只需在 Matlab 中输入: >> example 主要功能拍摄图像并显示结果。 论文结果再现 此代码的结果是原始数据
2022-11-18 19:49:21 300KB 系统开源
1
我们观察PPT的时候,面对整个场景,不会一下子处理全部场景信息,而会有选择地分配注意力,每次关注不同的区域,然后将信息整合来得到整个的视觉印象,进而指导后面的眼球运动。将感兴趣的东西放在视野中心,每次只处理视野中的部分,忽略视野外区域,这样做的好处是降低了任务的复杂度。深度学习领域中,处理一张大图的时候,使用卷积神经网络的计算量随着图片像素的增加而线性增加。如果参考人的视觉,有选择地分配注意力,就能选择性地从图片或视频中提取一系列的区域,每次只对提取的区域进行处理,再逐渐地把这些信息结合起来,建立场景或者环境的动态内部表示,这就是本文所要讲述的循环神经网络注意力模型。怎么实现的呢?把注意力问题
1
深度视觉注意力预测 该存储库包含Keras实现的“深度视觉注意力预测”论文,该论文发表在IEEE Transactions on Image Processing
1
matlab代码影响对EEG单一试验和连接组进行分类 这是我于2019年8月5日至30日进行的项目的仓库。 __目标:使用机器学习工具(例如MNE库)对EEG任务相关的单项试验和功能连接进行分类。 理论:检查我的 原始数据:头皮脑电图数据-Biosemi-512 Hz-64电极-50位健康的人(.bdf) 任务:视觉空间注意任务(每个受试者每个主要状况约250次试验) 预处理数据(从EEGLAB到PYTHON) 对于ERP:在连续信号(Raw,.bdf)上闪烁并过滤假象,然后在ERPLAB / EEGLAB上进行分段(.set + .ftd) 对于wPLI:在连续信号上,应用SCD(Raw,.bdf),闪烁并过滤假象,选择14个电极,进行Beta和Gamma过滤,并进行Hilbert变换,并应用wPLI(.erp),然后进行10 ICA(connectomes)(。mat) ) 数据维度以纪元形式构建,以符合Python流程(最初为EEGLAB / MATLAB) 目标(1)随时代而定分为2个类:出席与否 言语上的问题:每个时期,作为电压信号(ERP)或特征权重(ICA),将成为两态分
2021-12-22 13:28:43 3.62MB 系统开源
1
注意力机制是深度学习方法的一个重要主题。清华大学计算机图形学团队和南开大学程明明教授团队、卡迪夫大学Ralph R. Martin教授合作,在ArXiv上发布关于计算机视觉中的注意力机制的综述文章[1]。该综述系统地介绍了注意力机制在计算机视觉领域中相关工作,并创建了一个仓库.
2021-11-23 11:07:31 5.26MB 视觉注意力机制Attention
1
为了避免现有驾驶分心研究方法的局限性,从注意力需求角度入手,探索了高速跟车过程中驾驶人安全驾驶所需的最低视觉注意力。在驾驶模拟器上进行试验,记录 26名驾驶人在正常驾驶和视线遮挡驾驶2种状态下的视觉行为和视线遮挡行为数据,并进行统计分析。考虑驾驶人个体差异,初步探索了最低视觉注意力需求分布 。 结果表明:高速跟车驾驶状态下,驾驶人可以不需观察周围交通信息安全行驶35m 左右,视线遮挡距离与车速无关,可用于表征注意力需求。视线遮挡距离和遮挡频率存在个体差异,但驾驶人总体遮挡百分比基本不变。高速跟车过程中驾驶人的 剩余注意力主要用于观察道路前方和其他区域。具体表现为视线遮挡驾驶状态下驾驶人对道路前方和其他区域的观察距离显著缩短,而观察频率基本不变,且仅需行驶25m 左右的时间驾驶人即可完成观察周围交通状况,说明观察频率对获取交通信息更为重要。驾驶人平均每行驶20~60m(1.0~2.8s)需要观察前方道路一次,每行驶0~220m(4.1~8.6s)需要观察车速表一次, 每行驶140~300m(6.7~13.5s)需要观察后视镜一次,每50~200m(2.5~9.1s)可以遮挡视线一次,但遮挡距离一般小于43.7m(约2.4s)。研究结果有助于提高分心预警系统的环境敏感性和车内人机界面设计的合理性。
1
基于视觉注意力模型的大规模高分辨率遥感影像的矿区识别
2021-02-26 09:06:10 1.81MB 研究论文
1
本项目实现了视觉注意力区域的提取和检测,里面包含了详细的代码注释,算法解释,对实现很有帮助
2019-12-21 20:43:17 40.25MB 视觉注意力 计算机视觉
1
这是多个经典视觉显著模型代码的合集,包括ITTI、SUN、GBVS、BMS等等,内有运行方法。视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域)。 视觉注意机制(Visual Attention Mechanism,VA),即面对一个场景时,人类自动地对感兴趣区域进行处理而选择性地忽略不感兴趣区域,这些人们感兴趣区域被称之为显著性区域。
2019-12-21 19:23:50 39.25MB 显著模型 视觉注意力
1