三、常用的离做格式 使用有限体积法建立离散方程时,重要的一步是将控制体积界面上的物理盘及其导数通 过节点,物理盘插值求出 . 引λ插值方式的目的是为了建立离散方程,不同的插值方式对应于 22
2025-10-31 20:46:49 57.96MB FLUENT
1
中国东方航空股份有限公司选择Sun不仅是因为它带来了领先的IT核心技术,为其提供了高效的中心计算环境,Sun配合Sabre和西门子在全球机场专网市场上取得的诸多成功案例也是选择它的原因之一。通过安装新的AOC运行控制系统,就能充分运用计算机和网络技术来提供安全管理所需的大量信息,进一步提高飞行运行的监控质量,将安全管理建立在科学的基础之上,为东航的长治久安打下良好的基础。 : "基于Sun平台构建的高可用性计算中心" : 中国东方航空股份有限公司(简称东航)选择了Sun公司的IT核心技术来构建高效计算环境,并结合Sabre和西门子的成功案例,旨在提升航空运行的安全管理和监控质量。通过引入先进的AOC运行控制系统,东航旨在科学化安全管理,确保公司的长期稳定发展。 【知识点】: 1. **Sun平台**:Sun Microsystems是一家以提供高性能计算解决方案而闻名的公司,其服务器和存储系统在业界享有高声誉。东航选择Sun平台作为计算中心的基础,利用其先进的技术提高数据中心的效率和可靠性。 2. **高可用性计算中心**:高可用性意味着系统能够持续运行,即使在组件故障的情况下也能保证服务不间断。东航的计算中心采用了Sun Fire 6800服务器和SunStorEdge 9900存储系统,确保关键业务的稳定运行。 3. **AOC运行控制系统**:AOC(Airplane Operating Control)是航空公司的核心指挥系统,负责航班调度、安全监控和紧急响应。东航通过AOC系统实现飞行运行的自动化,提升了安全管理的科学性和效率。 4. **Sabre航班计划系统**:Sabre是全球交通行业的信息技术提供商,其AirFlite Schedule Manager系统帮助航空公司优化航班计划,提高航班正点率,降低成本,同时增强安全性。 5. **西门子通信系统**:西门子提供的数字程控通信系统在东航的AOC中扮演重要角色,确保了内部通信的顺畅,这对于高效运行控制至关重要。 6. **灾难应急指挥中心**:AOC系统包含了应急指挥功能,设计了紧急事件处理流程,增强了东航对突发事件的响应能力。 7. **业务流程优化**:东航在AOC系统的基础上,对飞行计划、飞行跟踪、机组管理等业务流程进行了改造,以适应自动化系统的运行,提升了整体管理水平。 8. **Sun Fire 6800服务器**:此款服务器具备高可用性、强管理性、高灵活性和投资保护,其性能相较于早期的Sun服务器有显著提升,为东航提供了强大的计算能力。 9. **SunStorEdge 9900存储系统**:这款存储系统代表了当时最前沿的存储技术,能够支持海量数据的高效存储和快速访问,确保关键业务数据的安全。 10. **市场竞争**:在航空行业中,安全是决定企业生存的关键因素。东航通过引进先进的技术,提升了自身的竞争力,旨在在激烈的市场竞争中保持领先地位。 通过上述技术集成,东航构建的高可用性计算中心不仅提升了航班运营的安全性,还通过优化业务流程降低了运行成本,展示了IT技术在航空业中的重要作用。
2025-10-31 15:25:34 25KB
1
“我们为什么选择Sun?用一句话说,就是Sun富有创新能力,Sun提供了一项高度创新的技术,这当然是十分重要的。但Sun真正的大手笔是,他们提出一项富于创新的合作方案,”HPCVL实验室执行主任Kenneth Edgecombe博士说,“其它因素是,Sun在产品强劲性、可靠性和性/价比方面享有盛誉;Sun拥有广泛系列的产品,它们均运行于一种通用操作系统;Sun Solaris操作系统受到客户高度青睐。” Sun公司是高性能计算领域的佼佼者,其平台被用于构建世界一流的高性能计算环境。这个环境在加拿大高性能计算虚拟实验室(HPCVL)得以实现,服务于Queen's大学、Carleton大学、加拿大皇家军事学院和渥太华大学等多所高等教育机构。HPCVL需要一个强大、可扩展且灵活的计算系统,能够处理复杂的研究、工程和商业应用,并提供安全的远程访问。 Sun Fire 6800服务器成为了构建这一系统的核心,每部服务器搭载96颗处理器,总计4部,提供了强大的处理能力。此外,Sun StorEdge T3磁盘阵列提供了3.9TB的存储空间,确保了海量数据的高效存储和访问。整个系统运行在Sun Solaris 8操作系统上,这是一个受到广泛赞誉的稳定、高效的平台。 Sun Grid Engine软件是系统的关键组成部分,它负责负载均衡,管理批处理任务,并与Sun HPC ClusterTools协同工作,优化计算任务在4部服务器之间的分配。这种优化的计算资源管理和调度,确保了系统的高效运行和资源的最大化利用。 Sun公司的创新能力、产品性能和性价比是HPCVL选择其作为合作伙伴的重要原因。Sun不仅提供了硬件和软件解决方案,还积极参与合作,如派出现场工程师支持、资助成员大学的项目,以及举办针对科研人员的研讨会。HPCVL实验室执行主任Kenneth Edgecombe博士对Sun的高度评价反映了这种深度合作的价值。 Sun的技术支持和合作方式被形容为“无与伦比”。通过成为网格和门户计算的Sun技术保障中心,HPCVL实现了用户无论身处何地,都能通过任何配置有浏览器的设备安全可靠地访问系统。这种远程访问能力和系统的安全性极大地增强了研究工作的便利性和效率。 HPCVL与Sun的合作证明了Sun平台在高性能计算领域的卓越性能和可靠性。Edgecombe博士的满意度表明,他们对当前的合作关系感到满意,并期待未来与Sun进行更深层次的合作。这样的成功案例展示了Sun如何通过其创新技术和全面的支持服务,为高性能计算环境提供坚实的基础,推动科学研究和技术进步。
2025-10-31 13:03:51 21KB
1
【数值分析】是数学的一个重要分支,主要研究如何用计算机处理和近似解决数学问题,特别是在处理无穷维或高维度空间中的问题时。本大作业是针对北航学生的一次数值分析实践,目的是求解一个501x501的实对称带状矩阵的特征值及相关性质。 我们要理解中提到的算法设计: 1. **初始化与幂法(Power Method)**:给定501x501的矩阵A,初始求出最大模的特征值λ1。接着使用原点平移法,将矩阵平移到λ1,求出新矩阵的最大模特征值λ501。如果λ1<λ501,则λ1和λ501就是所需的最大和最小特征值,否则交换它们的位置。这个过程基于幂法,它是一种迭代方法,通过不断乘以矩阵来逼近最大特征值。 2. **Doolittle分解与反幂法(Inverse Power Method)**:对经过平移的矩阵应用Doolittle分解,解决边界问题后,使用反幂法求解按模最小的特征值λs。Doolittle分解是LU分解的一种,将矩阵A分解为L和U两个下三角矩阵的乘积,有助于求解线性方程组。反幂法是求解小特征值的有效手段,通过迭代逐步减小矩阵与单位矩阵的差距。 3. **条件数与谱范数**:计算矩阵A的条件数Cond(A)²,它是矩阵A的范数与其逆矩阵的范数之积,反映了计算的稳定性。同时,计算最大特征值与最小特征值绝对值的比值,可以了解矩阵的谱范围。 4. **行列式与特征值的计算**:通过Doolittle分解,可以直接得到矩阵A的行列式det(A),因为|A| = |L| * |U| = |U|。此外,使用带位移的反幂法连续计算39个最接近mu(k)的特征值。 在【源代码】部分,我们可以看到用C语言实现这些算法的函数: - `assign()`函数负责初始化矩阵A的压缩矩阵C,给出具体的数值。 - `powerMethod()`函数执行幂法计算最大模的特征值。 - `inversePowerMethod()`函数执行反幂法求解最小模的特征值。 - `doolittle()`函数实现Doolittle分解。 - `det_A()`函数计算矩阵A的行列式。 整个作业的重点在于理解和应用数值线性代数中的概念,如特征值的计算、矩阵分解和稳定性分析。这些知识不仅在理论研究中有重要意义,在工程和科学计算中也广泛应用于数据分析、模拟和优化问题。通过这样的实践作业,学生能深入理解数值方法的实际操作及其在解决复杂问题中的作用。
2025-10-30 20:11:32 122KB 数值分析 计算实习
1
内容概要:本文详细介绍了如何利用Excel进行电力系统的标幺化计算。首先,通过设定合理的基准值(如电压、电流、功率等),确保计算的准确性。接着,文章展示了如何使用Excel公式和条件格式来自动化计算过程,包括处理溢出风险、控制数据精度以及将浮点数转换为定点数。此外,文中还提供了多个实用技巧,如防止除零错误、优化定点化处理、设置高精度模式等。最后,文章强调了标幺化在电力系统中的重要性,并提供了一些实战经验和常见错误的解决方案。 适合人群:从事电力系统设计、维护及相关研究的技术人员,尤其是对Excel有一定基础的工程师。 使用场景及目标:适用于需要频繁进行标幺化计算的工作环境,帮助用户快速、准确地完成复杂的电力系统计算任务,提高工作效率并减少人为错误。 其他说明:文章不仅讲解了具体的Excel操作方法,还分享了许多实践经验,使得读者能够更好地理解和应用标幺化计算的概念和技术。
2025-10-30 15:35:11 308KB
1
《全站仪任意网测量2023》控制网平差新型软件主要功能介绍 杨浩 摘要 《全站仪任意网测量2023》软件系统可以平差处理所有迄今为止的60多种控制网,及其附加已知条件、秩亏网、拟稳网、稳健估计、岭估计、概算、抵偿投影变形、粗差处理、三角高程网等,有这一款软件就足够了。本软件是工作过程高度AI智能化的,很多工作及高难度逻辑已不再需要用户考虑,因此软件界面少,使用简单,只要提交外业原始观测数据文件将自动化识别控制网类型进行平差处理并给出各种表格化总体成果报告,省事省心省力。手机、电脑打开闪速工作网( www.ldcmm.com )即可使用,方便快捷。 另外,本软件尤其适应于困难的控制测量定点工作。用户只要掌握对每一个未知点的平面独立观测条件不少于2个即可,这使得外业工作很省心。 本软件有可运行范例供试用。 利用本软件系统还可以建立“工程定位系统(Engineering Position System,简称EPS)”。 关键词:控制网,测量平差 主要功能 《全站仪任意网测量2023》软件系统实现了AI技术,并使得测量平差工作高度AI智能化。即,本软件系统不仅解决专业问题,更重要的是实现了整个
2025-10-30 13:50:44 387KB 人工智能 平差计算
1
内容概要:本文详细介绍了如何使用COMSOL进行光学领域的复杂现象模拟,特别是针对BICs(连续谱中的束缚态)的操作。主要内容涵盖三个方面:首先是能带计算,通过构建周期性光子晶体结构并在频域中求解,获取不同频率下的本征模式,从而绘制能带图;其次是品质因子计算,基于损耗功率和储能,通过频域线宽法和时域衰减法计算Q因子;最后是远场偏振箭头绘制,利用远场计算模块展示光在远场区域的偏振分布。每个步骤均配有详细的代码示例和避坑指南,确保用户能够顺利实施仿真。 适合人群:从事光子晶体或超表面研究的研究人员和技术人员,尤其是那些希望深入了解BICs特性和仿真的专业人士。 使用场景及目标:①用于科研项目中精确模拟光子晶体和超表面的光学特性;②辅助设计特定频率响应的光学器件;③提高对BICs的理解及其在高灵敏度传感器等应用中的潜力。 其他说明:文中还提供了配套视频教程,帮助用户更好地理解和实践每一个操作环节。此外,强调了在实际操作中应注意的问题,如参数化扫描的精度、模式追踪的功能启用、Q因子计算的方法选择等。
2025-10-29 22:28:06 246KB COMSOL
1
脉冲涡流检测仿真模型的快速精准计算及其实时引导教学流程,脉冲涡流仿真:模型建立与深度检测实验解析及精确计算指导手册,图1:脉冲涡流检测三维仿真模型 图2:脉冲涡流检测激励信号 图3:脉冲涡流检出电信信号 图4:脉冲涡流针对缺陷不同深度扫描检出电信信号 图5:脉冲涡流对缺陷不同深度扫描检出电压信号局部放大图 图6:脉冲涡流磁通密度模 整个模型扫描计算时间1分30秒,速度更快,检出结果更精确 附言:有远程指导,直至指导自己能够建立模型,解决是所有疑难杂症,最后自己完成脉冲涡流仿真 ,核心关键词:脉冲涡流、仿真模型、检测、激励信号、检出电信信号、深度扫描、检出电压信号、磁通密度模、计算时间、远程指导。,脉冲涡流仿真模型与检出信号研究
2025-10-27 20:16:06 541KB 数据结构
1
基于Lumerical FDTD仿真的不对称光栅衍射效率研究与复现多级次案例,Lumerical FDTD模拟研究:复现不对称光栅多级衍射效率的精确计算与解析,Lumerical FDTD复现不对称光栅不同级的衍射效率 ,Lumerical FDTD; 复现; 不对称光栅; 衍射效率; 不同级,Lumerical FDTD模拟复现不对称光栅衍射效率研究 在光子学研究中,不对称光栅的衍射效率研究一直是前沿科学领域关注的重点之一。由于不对称光栅的复杂几何结构和衍射特性,理论解析存在一定的难度,这使得通过数值仿真方法来研究和预测不对称光栅的衍射效率变得尤为重要。Lumerical FDTD(时域有限差分法)作为一种先进的仿真工具,能够在频域内模拟和分析光波与光栅相互作用的物理过程,进而获得精确的衍射效率计算结果。 不对称光栅在光学器件中扮演着关键角色,例如在光谱仪、光学传感器和光学通讯设备中。这些器件的性能很大程度上取决于光栅衍射效率的优化。因此,精确计算和复现不对称光栅的多级衍射效率,对于指导实际光栅设计和制造具有重大意义。 Lumerical FDTD模拟研究不仅能够复现不对称光栅的衍射效率,还能解析光栅的物理特性,如光波与光栅相互作用的细节,从而帮助研究者深入理解光栅的衍射机制。通过调整光栅的结构参数,如栅线宽度、深度以及栅线间距,研究者可以优化光栅的衍射性能,实现特定的光学功能。 此外,基于Lumerical FDTD仿真的研究还能够帮助实验物理学家在进行实际测量之前预估可能的结果,并对实验设计进行指导。这种理论与实验相结合的方法,不仅提高了研究效率,也加深了对物理现象的理解。 从文件名称列表中可以看出,这些文档涵盖了不对称光栅衍射效率研究的多个方面,包括引言、理论分析、模拟仿真和应用研究等。这些材料对于研究人员深入探究不对称光栅的物理性能、设计优化以及在不同光学系统中的应用具有重要的参考价值。 文件列表中还包含了一个图像文件“1.jpg”,它可能提供了对不对称光栅结构或仿真结果的直观展示,这对于理解研究内容和结果具有辅助作用。而其他文档则包含了大量的理论分析和仿真数据,为深入研究提供了基础数据和分析框架。 Lumerical FDTD仿真在不对称光栅衍射效率研究中扮演着重要角色,它不仅能够精确复现光栅的多级衍射效率,还能够帮助研究人员在理论上深化对光栅物理特性的理解,并指导实际应用的设计与优化。这份工作对于推动光学技术的进步、开发新型光学器件具有重要的科学价值和应用前景。
2025-10-25 14:47:17 829KB scss
1
内容概要:本文介绍了一种计算光子晶体陈数(Chern Number)的联合仿真与数据处理方法,通过COMSOL Multiphysics软件模拟光子晶体结构并计算其本征电磁场,随后导出场数据至MATLAB平台进行后处理,利用自定义算法程序提取波矢、频率及场分布信息,进而实现陈数的数值计算。文中以旋磁介质为例,参考已有文献中的MATLAB代码框架,展示了从数据导入、关键参数提取到陈数函数计算的完整流程,强调了拓扑物理量在光子晶体研究中的重要性。 适合人群:具备COMSOL建模基础和MATLAB编程能力,从事光子晶体、拓扑光子学或计算物理相关研究的研究生、科研人员及工程师。 使用场景及目标:①研究光子晶体的拓扑能带结构;②计算具有非平凡拓扑特性的光子系统陈数;③实现多物理场仿真与数值分析的协同工作流程。 阅读建议:使用者应熟悉COMSOL的本征模求解器与数据导出格式,并掌握MATLAB中矩阵运算与数值积分方法,建议结合文中提及的开源代码链接进行调试与验证,以提升计算准确性与效率。
2025-10-23 20:36:10 836KB
1