carvana-image-masking-challenge:train 数据(数据分为train和mask,全部数据太大,单独上传,mask再另一个下载链接里) 数据介绍:2017 年 7 月,美国二手汽车零售平台 Carvana 在知名机器学习竞赛平台 kaggle 上发布了名为 Carvana 图像掩模大挑战赛(Carvana Image Masking Challenge)的比赛项目,吸引了许多计算机视觉等相关领域的研究者参与。
2025-07-29 18:00:30 408.47MB 机器学习 计算机视觉
1
数据集是一个大规模的虹膜图像数据集,由中国科学院自动化研究所(CASIA)创建。该数据集包含来自 1000 名受试者的 20000 幅虹膜图像,每名受试者提供 20 幅图像。这些图像使用IKEMB-100 双眼虹膜相机采集,分辨率为 640×480 像素。数据集的特点:规模大:包含 1000 名受试者的虹膜图像,是首个公开的千人级虹膜数据集。图像质量高:使用先进的 IKEMB-100 相机采集,图像清晰,适合用于虹膜特征提取。多样性丰富:图像中存在多种类内变化,如眼镜佩戴、镜面反射等,增加了数据集的复杂性和实用性。虹膜识别算法研究:可用于开发和验证虹膜识别算法,包括图像预处理、特征提取、特征匹配等。分类与索引方法开发:适合用于研究虹膜特征的独特性,开发新的分类和索引方法。机器学习与深度学习:为深度学习模型(如卷积神经网络)提供丰富的训练数据,提升模型的准确性和鲁棒性。数据集为虹膜识别研究提供了宝贵的资源,帮助研究者深入探究虹膜特征的独特性和多样性,推动虹膜识别技术在生物特征识别领域的应用和发展。
2025-07-28 16:53:38 490.79MB 深度学习 机器学习 图像处理 计算机视觉
1
内容概要:本文档详细介绍了基于Swin Transformer架构的深度学习模型——SwinUNet的实现。该模型采用了改进的Global-Local Spatial Attention(GLSA)机制,结合了全局上下文理解和局部细节捕捉能力,提升了模型对图像特征的理解。文档具体描述了GLSA模块、窗口化多头自注意力机制(Window-based Multi-head Self-Attention)、Swin Transformer块、补丁嵌入(Patch Embedding)、下采样与上采样层等关键组件的设计与实现。此外,还展示了模型的前向传播流程,包括编码器、瓶颈层和解码器的具体操作。 适合人群:具备一定深度学习基础,特别是熟悉PyTorch框架和Transformer架构的研发人员。 使用场景及目标:①适用于医学影像、遥感图像等需要高精度分割任务的场景;②通过改进的GLSA机制,提升模型对全局和局部特征的捕捉能力,从而提高分割精度;③利用Swin Transformer的层次化结构,有效处理大规模图像数据。 阅读建议:此资源不仅包含代码实现,还涉及大量理论知识和数学推导,因此建议读者在学习过程中结合相关文献深入理解每个模块的功能和原理,并通过调试代码加深对模型架构的认识。
2025-07-20 11:34:47 36KB
1
经典计算机视觉入门教材,绝对经典,马颂德,张正友编著,1998.
2025-07-19 18:42:25 13.61MB 计算机视觉
1
计算机视觉中的数学方法》由射影几何、矩阵与张量、模型估计3篇组成,它们是三维计算机视觉所涉及的基本数学理论与方法。射影几何学是三维计算机视觉的数学基础,《计算机视觉中的数学方法》着重介绍射影几何学及其在视觉中的应用,主要内容包括:平面与空间射影几何,摄像机几何,两视点几何,自标定技术和三维重构理论。矩阵与张量是描述和解决三维计算机视觉问题的必要数学工具,《计算机视觉中的数学方法》着重介绍与视觉有关的矩阵和张量理论及其应用,主要内容包括:矩阵分解,矩阵分析,张量代数,运动与结构,多视点张量。模型估计是三维计算机视觉的基本问题,通常涉及变换或某种数学量的估计,《计算机视觉中的数学方法》着重介绍与视觉估计有关的数学理论与方法,主要内容包括:迭代优化理论,参数估计理论,视觉估计的代数方法、几何方法、鲁棒方法和贝叶斯方法。
2025-07-18 22:29:16 3.95MB 计算机视觉 数学方法
1
《Pattern Recognition Letters》(《模式识别信函》)是国际上极具影响力的学术期刊,主要聚焦于模式识别与机器学习领域的前沿研究。为了帮助作者高效地撰写符合该期刊排版要求的论文,专门设计了LaTeX模板。使用该模板前,需在Overleaf平台创建新项目。Overleaf是一款便捷的在线LaTeX编辑器,支持多人协作编写与文档管理。将模板文件上传至Overleaf后,即可开始论文撰写。 模板压缩包中的“prletter-28012014”文件是核心部分,通常包含以下内容:一是main.tex文件,这是主体LaTeX文件,涵盖文章标题、作者信息、摘要、章节结构及参考文献等;二是biblio.bib文件,作为外部参考文献数据库,用于存储文献引用信息,LaTeX会据此生成参考文献列表;三是sty或cls文件,这些是样式文件,用于定义文章格式,如页边距、字体、标题样式等,以确保符合《Pattern Recognition Letters》的格式要求;四是figure或img文件夹,用于存放论文中的图像或图表,LaTeX可引用这些文件将图像插入到文章中;五是其他辅助文件,如.aux、.log等,这些文件在LaTeX编译过程中生成,用于记录编译信息。 在LaTeX中撰写论文主要分为编译和预览两个步骤。在Overleaf上编译main.tex文件后,LaTeX会处理所有指令和引用,生成PDF预览。若需修改格式或内容,只需更新源文件并重新编译,预览即可自动更新。 使用该模板时需注意以下几点:一是根据期刊指南,确保摘要简洁明了,突出研究的主要发现;二是引用格式需严格遵循Elsevier的规定,通常采用作者-年份引用方式;三是图表和图形应清晰易读,每个图表都需配备标题和说明;四是遵循期刊对字数、引用数量和页数的限制;五是正确使用LaTeX命令设置章节标题、子标题、列表、数学
2025-07-16 23:17:52 56KB 学术资源 计算机视觉
1
yolov8s-worldv2.pt 预训练权重
2025-07-15 15:03:32 24.72MB 计算机视觉
1
《OpenCV中的视频I/O模块与FFmpeg库详解》 在计算机视觉领域,OpenCV(开源计算机视觉库)是一个广泛使用的工具,它包含了丰富的函数和模块,用于图像处理、计算机视觉以及机器学习任务。其中,`opencv_videoio_ffmpeg.dll` 是OpenCV库中的一个重要组件,主要用于视频的输入和输出操作。FFmpeg则是一个强大的多媒体处理框架,OpenCV通过调用FFmpeg库来实现对视频流的高效处理。 FFmpeg是一个开源项目,它包含了多个组件,如libavcodec(编码/解码库)、libavformat(容器格式处理库)和libavutil(通用工具库)等,这些组件使得OpenCV能够支持多种视频格式和编码标准。`opencv_videoio_ffmpeg.dll` 这个动态链接库文件是OpenCV与FFmpeg库交互的桥梁,使得开发者在使用OpenCV时,可以方便地读取和写入视频文件。 OpenCV中的VideoIO模块是处理视频数据的核心部分,它提供了一系列的API接口,如`cv::VideoCapture` 和 `cv::VideoWriter`,方便用户进行视频捕获和视频录制。`cv::VideoCapture` 类用于打开并读取视频文件或摄像头输入,而`cv::VideoWriter` 类则用于创建一个新的视频文件并写入帧数据。这两个类都依赖于`opencv_videoio_ffmpeg.dll` 这样的底层库,通过FFmpeg来实现底层的编码和解码工作。 在实际应用中,`opencv_videoio_ffmpeg.dll` 的使用可以大大提高视频处理的效率和兼容性。例如,当开发者需要从网络流中实时获取视频数据或者处理各种不同编码格式的本地视频文件时,OpenCV结合FFmpeg的能力就能派上大用场。同时,FFmpeg库也支持硬件加速功能,这在处理高分辨率、高帧率的视频时,可以显著降低CPU的负载。 在安全性和稳定性方面,MD5值(eece4ec8304188117ffc7d5dfd0fc0ae)是对`opencv_videoio_ffmpeg.dll` 文件内容的一种校验,它可以确保文件在传输或存储过程中没有被篡改。通常,开发者在使用或更新库文件时,会对比MD5值以验证文件的完整性。 `opencv_videoio_ffmpeg.dll` 在OpenCV中的作用至关重要,它是连接OpenCV与FFmpeg的关键组件,为处理视频数据提供了强大的支持。通过深入理解和掌握这个模块,开发者可以更有效地利用OpenCV进行计算机视觉相关的开发,无论是基础的视频播放,还是复杂的视频分析和处理任务,都能得心应手。
2025-07-11 14:06:26 7.8MB opencv 人工智能 计算机视觉
1
内容概要:本文档详细介绍了MediaPipe人脸检测项目在Linux系统上的安装、配置和运行步骤。首先讲解了通过Bazelisk安装和管理Bazel的方法,包括下载、赋予执行权限、验证安装等步骤。接着阐述了MediaPipe的三种导入或下载方式,并重点描述了如何安装OpenCV和FFmpeg,包括使用包管理器安装预编译库、从源代码构建等方法。此外,文档还涉及了CUDA或GPU加速的配置,以及C++和Python版本的“Hello World”示例的编译与运行。最后,针对常见的编译错误如GCC版本不兼容、Python路径设置错误等提供了详细的解决方案。 适合人群:具备一定Linux操作基础,对计算机视觉或机器学习领域感兴趣的开发者,尤其是希望在嵌入式设备或Linux平台上实现人脸检测功能的研发人员。 使用场景及目标:①帮助开发者在Linux系统上快速搭建MediaPipe人脸检测环境;②解决在编译和运行过程中可能出现的技术难题;③为后续深入研究MediaPipe或其他相关项目提供基础支持。 阅读建议:由于涉及到较多命令行操作和技术细节,建议读者在实际环境中跟随文档逐步操作,同时注意根据自身环境调整相关配置参数。对于遇到的问题,可以参考文档提供的常见问题解决方案,并结合自身情况进行排查和解决。
2025-07-07 15:38:25 669KB Bazel MediaPipe OpenCV GPU加速
1
计算机视觉和目标检测领域,有一项技术被广泛应用于物体识别和定位,这就是YOLO(You Only Look Once)模型。YOLO以其速度快、准确性高而著称,它能够将目标检测问题转化为一个回归问题,并且在检测速度与检测精度之间取得了较好的平衡。随着技术的发展,YOLO系列不断更新换代,YOLOv1作为该系列的首个版本,虽然准确率和速度相比后续版本有所不足,但在当时仍具有重要的里程碑意义。 而Crowdhuman数据集是一个特别针对人群密集场景下的人体检测和跟踪任务所设计的数据集,它的出现在很大程度上推动了人群计数和人群分析技术的发展。该数据集不仅包含了大量的人群图片,还标注了人体的头部位置,这为研究者提供了丰富的信息用于训练和评估他们的模型。由于人群场景的复杂性,这对目标检测算法的性能提出了更高要求。 本数据集将YOLOv1的标注格式应用于Crowdhuman数据集,这意味着每张图片中的人数及其位置都被标注成YOLOv1可以识别的格式。这样的数据集不仅可以直接用于训练,而且还可以通过YOLOv1的网络模型来进行人群统计,实现快速准确的人数统计功能。这对于人流量密集的场合,如商场、车站、机场等场所的人群监控具有重要的应用价值。例如,可以用于商业数据分析、安全管理、资源分配等多个领域。 将YOLO格式应用于Crowdhuman数据集,不仅让模型可以快速地定位图片中的人体,还能进行人数统计,这无疑为研究者提供了一个实用的工具,同时也推动了YOLO系列算法在人群检测和计数领域的应用。通过使用这种特定格式的数据集,研究者可以更加专注于模型的优化和算法的改进,而不需要从零开始收集和标注数据,从而节省了大量的时间和资源。 在技术层面,YOLOv1采用的是一种端到端的训练方式,它将图像分割成一个个格子,每个格子负责预测中心点落在该格子内的物体边界框和类别概率。这种设计使得模型在进行目标检测时能够更加迅速,同时也保持了较高的准确性。此外,YOLOv1模型在实际应用中具有较好的泛化能力,能够处理各种不同环境下的目标检测问题。 人群检测和计数是计算机视觉中的一个难点,而Crowdhuman数据集的出现正是为了解决这一难题。通过本数据集,研究者可以在丰富的场景下训练他们的模型,从而提高模型对于遮挡、密集排列等多种复杂情况的处理能力。随着深度学习技术的不断进步,结合YOLOv1格式的Crowdhuman数据集将能更好地推动人群检测技术的发展,为实际应用提供更为准确和高效的技术支撑。
2025-07-07 15:34:48 921.05MB YOLO 人数统计 目标检测 计算机视觉
1