《大学计算机基础》课程上机实验指导涵盖了Windows XP操作系统和Office 2003办公软件的应用操作,主要内容包括Windows基本操作、窗口、菜单和对话框的基本使用方法,以及文件的组织结构。具体操作内容涵盖了鼠标和键盘的常用操作技巧、桌面组成元素及属性设置、快捷方式创建、启动应用程序、剪贴板使用、文件管理等。此外,还包括对“我的电脑”和“资源管理器”窗口的操作指导,以及对Windows文件系统的理解。 实验课程旨在帮助学生通过实践操作,掌握Windows XP的基本操作技能,包括对鼠标和键盘的熟练运用,桌面环境的个性化设置,以及通过创建快捷方式快速启动程序。实验内容涉及了窗口切换、最大化、最小化、还原和关闭等窗口操作技巧,以及对话框的组成和操作方法,帮助学生熟悉Windows环境下的交互界面。实验指导还涵盖了菜单的使用方法,进一步加深学生对Windows图形用户界面操作的理解。 除此之外,实验指导强调了对Windows文件系统的组织结构的认识,包括对文件和文件夹的管理,以及文件的路径和定位方法。这些操作和知识对于学生未来在计算机操作和管理方面的学习和工作具有重要的基础性作用。 对于即将学习计算机或正在进行计算机基础学习的学生来说,掌握这些基础操作技能是非常重要的,它们是进行进一步学习和工作的基础。通过这些实验,学生将能够更加熟练和自信地使用计算机进行日常的学习和工作。
2025-08-25 11:47:40 1.96MB
1
PCI Express(简称PCIe)是一个高速串行计算机扩展总线标准,主要用于计算机内部连接各种外围设备。PCIe 7.0规范是PCIe技术发展的最新阶段,其提供了比以往更高带宽的数据传输能力,适用于处理大量数据的高性能计算环境。 PCIe技术自2002年提出以来,已经经历了多个版本的迭代发展,每个新版本都致力于提供更高的数据传输速率和更好的性能,以满足不断增长的数据处理需求。PCIe 7.0作为该技术的最新标准,代表了当前硬件接口技术的最前沿水平。 PCIe技术的核心优势在于其高带宽和高效率的数据传输能力。PCIe总线采用点对点的数据传输方式,每个设备通过一条专用的通道与PCIe根复合体连接,这大大降低了数据传输过程中的冲突和延迟,确保数据传输的高效性和稳定性。 PCIe的链路(link)是指PCIe设备之间的物理连接。每个PCIe链路由一对差分信号线组成,通过这些信号线,数据可以高速双向传输。PCIe设备在物理层面可以是多个链路的集合,这些链路可以根据需要进行聚合,以实现更高的数据传输速率。 PCIe的架构(fabric topology)是整个PCIe设备互连的拓扑结构,它决定了各个PCIe设备如何通过链路相互连接。在PCIe架构中,复杂的拓扑结构可以通过PCIe交换器(switch)和桥接器(bridge)实现。PCIe交换器提供了灵活的连接方式,使得不同的PCIe设备可以形成更加复杂和高效的互连网络。 在规范文件中,PCI-SIG组织对PCIe 7.0规范进行了详尽的说明,包括其架构、功能、性能参数等。此外,规范文件还强调了对文档使用中可能出现的任何错误不承担任何责任,同时声明该文档是“按原样”提供,不包含任何形式的保证。文档中还明确了对知识产权的处理,禁止修改文档内容,保留了PCI-SIG和其他产品名称的商标权。 PCIe技术的应用范围非常广泛,包括服务器、工作站、台式机和笔记本电脑在内的各种计算机平台。此外,PCIe技术还被广泛应用于图形处理、存储、网络和工业自动化等领域。随着技术的不断发展,PCIe标准也在不断更新和升级,以适应新应用需求和技术趋势。 PCIe 7.0规范的推出,是PCIe技术发展的又一个里程碑,其为未来计算机系统提供了更高性能的硬件接口标准,将推动计算机技术的发展进入一个新的阶段。
2025-08-25 10:02:14 30.37MB Express 硬件接口 通信协议 计算机架构
1
本书根据教育部《关于进一步加强高等学校计算机基础教学的意见》中有关“大学计算机基础”课程的教学要求编写的,满足大学计算机“普及计算机文化,培养专业应用能力,训练计算思维能力”的教学总体要求。全书共分6章,主要内容包括:计算思维概论,计算机硬件基础,计算机软件基础,算法基础,网络计算基础,计算机职业道德教育。
2025-08-25 09:25:22 72.08MB 计算思维导论
1
一组讲述计算机内幕的文章,旨在揭示现代操作系统内核的工作原理。我希望这些文章能对电脑爱好者和程序 员有所帮助,特别是对这类话题感兴趣但没有相关知识的人们。讨论的焦点是 Linux,Windows,和 Intel 处理器。 钻研系统内幕是我的一个爱好。我曾经编写过不少内核模式的代码,只是最近一段时间不再写了。这第一篇文章讲 述了现代 Intel 主板的布局,CPU 如何访问内存,以及系统的内存映射 计算机系统是由硬件和软件共同构成的一个庞大而复杂的实体,而程序员往往需要深入到这个系统的底层,理解其运作的原理。本文将从程序员的角度,深入探讨计算机系统底层知识,特别是现代操作系统内核的工作原理,重点关注Linux、Windows和Intel处理器。 要理解现代计算机是如何连接各个组件的。现代计算机主板一般包括北桥和南桥芯片组,它们负责处理不同类型的硬件通信。CPU通过前端总线与北桥芯片连接,负责处理内存的读写请求。CPU并不直接知道它连接的是什么,它通过针脚与外界交互,通过内存地址空间、I/O地址空间和中断三种方式与外界通信。 以Intel Core 2 QX6600处理器为例,它有33个针脚用于传输物理内存地址,64个针脚用于数据传输。这意味着它能控制的物理内存达到64GB。然而,由于大多数芯片组仅支持最多8GB的RAM,所以实际可用的物理内存会少于64GB。而且,物理内存地址不仅用于RAM的读写,还可用于主板上各种设备间的通信,这种通信方式称为内存映射I/O。例如,显卡、PCI卡和BIOS中的flash存储器等设备的地址空间,都是通过物理内存地址映射来实现的。 内存地址映射表决定了CPU发出的物理内存请求被转发到哪个设备。一般情况下,大部分内存地址被映射到RAM,剩下的地址由映射表指明对应的设备。这些被映射为设备的内存地址,在物理内存中形成了一种“空洞”。例如,在PC内存640KB到1MB之间的区域,就可能被显卡和PCI设备使用,这也就解释了为什么32位操作系统无法使用全部的4GB内存空间。在Linux系统中,可以通过查看/proc/iomem文件,来了解这些空洞的地址范围。 再来看一下CPU如何在不同模式下寻址内存。在32位保护模式下,CPU可以寻址最多4GB的物理地址空间,但是由于地址空间中的一部分被设备占用,实际可用的RAM容量会减少。在实模式下,CPU只能寻址1MB的物理地址空间。而在64位保护模式下,CPU理论上可以寻址高达64GB的物理地址空间,但实际上很少有芯片组支持这么大的RAM。在64位模式下,CPU有可能访问到RAM空间中被主板上的设备映射走了的区域,这种技术称为回收(reclaiming),需要芯片组的配合。 了解了内存布局和CPU寻址原理后,接下来需要掌握CPU如何将程序中的逻辑地址转换成物理地址。在CPU内部使用的是逻辑地址,需要经过地址翻译机制转换成物理地址才能访问内存。CPU的运行模式决定了其能访问的物理内存大小,这直接影响到操作系统的内存管理和程序设计。 从程序员的角度来看,深入理解计算机系统的底层工作原理,有助于我们编写更加高效和健壮的代码,也能更好地进行系统级问题的调试和优化。同时,了解了内存的布局和CPU的工作机制后,我们可以更好地利用系统资源,编写出能够充分利用硬件性能的程序。此外,对于希望在操作系统底层开发领域深入研究的程序员来说,这份知识是必不可少的基础。 尽管现代操作系统为程序员提供了很多抽象和封装,但是理解计算机系统的底层原理依旧是一个不可或缺的技能。通过对计算机硬件和操作系统内核更深层次的理解,程序员不仅能够写出更加符合硬件特性的代码,还能够在性能调优、系统编程和硬件相关应用开发中取得更好的成绩。因此,无论是对于初学者还是资深的程序员,深入理解计算机系统底层的工作原理,都是十分有价值的学习方向。
2025-08-25 07:54:48 938KB 计算机系统 系统的底层 程序员
1
计算机网络是一个复杂的系统,它通过各种通信技术将不同地理位置的计算机连接起来,以实现数据的共享和交换。计算机网络的功能主要有两个:连通性和共享。连通性是指网络能够使用户与远程的其他用户或资源进行连接,而共享则指的是网络中资源的共用,包括硬件、软件和数据资源。 分组交换是计算机网络中常用的一种数据交换方式,它结合了电路交换和报文交换的优点。分组交换技术通过将数据分割成较短的块,即“分组”,并为每个分组加上控制信息以标识发送者和接收者。这些分组在网络中独立地选择路径,然后在目标端重组成原始数据。分组交换具有灵活性高、利用率高、传输时延小和交互性好的特点。 电路交换则是一种通信方式,通过预留一条固定的通信电路进行信息传递。这种方式适用于实时性强、对时延要求高、通信量大的应用场景,例如电话通信。 报文交换指的是将报文存储在交换节点上,等待输出电路空闲时再进行传送。报文交换的优点在于中继电路利用率高,可以实现不同速率和协议的终端之间的互通,但存在传输时延大、占用存储资源多等缺点。 因特网作为全球最大的计算机网络,其发展可以分为几个阶段。最初是由ARPANET发展起来的,而后经过三级结构的建设,并逐渐形成了多层次ISP结构的网络体系。因特网标准的制定分为四个阶段,包括互联网草案、建议标准、草案标准和因特网标准。 在计算机网络的分类中,主要按网络覆盖的地理范围和传输介质来进行。按地理范围分类,有局域网(LAN)、城域网(MAN)和广域网(WAN)。局域网通常覆盖较小的区域,使用有线连接;城域网覆盖整个城市,技术上与局域网相似;广域网地理覆盖范围最广,技术上更为复杂。按传输介质分类,则包括有线网和无线网。有线网使用同轴电缆、双绞线等,而无线网通过电磁波进行通信。 此外,关于internet和Internet的区别,internet是一个泛指多种网络互联的通用名词,而Internet特指全球最大的特定计算机网络,它采用TCP/IP协议族,其前身是美国的ARPANET。 从上述内容可以了解到,计算机网络的类型多样,不同的网络类型有着各自的特点和适用范围。了解这些基础知识对于掌握整个计算机网络的架构、通信协议以及相关技术是至关重要的。通过学习计算机网络,我们可以更好地利用这一技术来服务于我们的工作、学习和日常生活。
2025-08-24 17:01:27 128KB
1
《网络规划设计师历年真题详解》是一份涵盖了2009年至2019年间的考试资源,旨在为备考网络规划设计师的考生提供全面而深入的学习材料。这份压缩包文件包含两部分:历年真题与解析,以及精讲内容,是备考过程中不可或缺的重要参考资料。 一、历年真题的重要性 网络规划设计师作为一项专业资格认证,其历年真题是了解考试形式、难度及重点的直接途径。通过练习真题,考生可以熟悉考试结构,了解常见题型,例如选择题、填空题、判断题和案例分析等。同时,真题的反复操练有助于提高解题速度和准确率,帮助考生在实际考试中更好地应对时间压力。 二、解析的价值 解析部分是对每一道真题的详尽解答,它不仅给出了正确答案,更重要的是解释了答案背后的原理和思路。考生通过阅读解析,能理解题目考察的知识点,掌握解题技巧,弥补知识盲点。对于做错的题目,解析提供了反思和改正错误的机会,有助于提升学习效果。 三、精讲内容的深度学习 “精讲”部分通常是对核心知识点的深入讲解,可能包括理论知识的梳理、设计原则的解析、实战案例的分享等。这部分内容能够帮助考生从宏观和微观两个层面理解网络规划设计,深化对网络架构、路由协议、网络安全、网络优化等方面的认知。通过精讲,考生可以系统地构建知识体系,提高理论素养和实际操作能力。 四、备考策略 备考网络规划设计师,考生应充分利用这些资源,制定科学的学习计划。定期练习历年真题,记录错题,针对错题进行专项复习。结合解析深入理解每个问题,巩固相关知识点。通过精讲内容拓宽视野,提升综合分析和解决问题的能力。 五、持续学习与实践 网络技术日新月异,网络规划设计师不仅要掌握理论知识,还要关注行业发展动态,不断更新知识库。在学习过程中,考生可以通过参与实际项目、阅读专业书籍和论文、参加行业研讨会等方式,将理论与实践相结合,提升自己的专业素养。 总结,这份压缩包文件为网络规划设计师的备考之路提供了丰富的学习资源。考生通过系统地使用这些材料,结合个人努力,有望在考试中取得优异成绩,成为一名合格的网络规划设计师。
2025-08-19 20:12:46 50.85MB 计算机网络
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 在万物互联的时代,信息安全已成为数字化进程中的关键基石。从金融交易到医疗数据,从企业机密到个人隐私,每一次数据流转都面临着潜在的安全风险。本文聚焦计算机信息安全核心技术,揭示黑客攻击的常见手法与防范策略。通过行业洞察与技术前瞻,帮助读者理解信息安全的底层逻辑,掌握实用的安全防护技巧。让我们共同提升安全意识,用技术为数字生活保驾护航。
2025-08-18 13:54:14 4.91MB 计算机信息安全
1
D3FG 是一个在口袋中基于功能团的3D分子生成扩散模型。与通常分子生成模型直接生成分子坐标和原子类型不同,D3FG 将分子分解为两类组成部分:官能团和连接体,然后使用扩散生成模型学习这些组成部分的类型和几何分布。本文对D3FG进行了测评,包括:环境安装、分子生成、模型训练、报错排除、生成分子对接、高打分分子展示等;
1
内容概要:本文详细介绍了YOLOv13的目标检测框架,从技术背景、核心技术亮点、性能优势、安装流程、使用指南到实际应用场景进行了全面解析。YOLOv13在继承YOLO系列优点的基础上,引入HyperACE和FullPAD两项关键技术,分别用于增强特征间的高阶关联和全流程信息协同,从而显著提升了复杂场景下的检测精度。文章还详细描述了YOLOv13的安装步骤,包括系统环境要求、软件依赖安装和源码获取,以及模型验证、训练、推理和导出的具体操作。最后,通过安防监控、自动驾驶、工业检测等领域的实际应用案例展示了YOLOv13的强大性能。 适用人群:具备一定编程基础,特别是对计算机视觉和深度学习有一定了解的研发人员和技术爱好者。 使用场景及目标:①理解YOLOv13的核心技术和性能优势;②掌握YOLOv13的安装、配置及使用方法;③学会如何在实际项目中应用YOLOv13进行目标检测,包括模型训练、验证、推理和导出。 其他说明:本文不仅提供了详细的安装和使用指导,还针对可能出现的问题给出了解决方案,并分享了一些优化技巧,如数据增强、模型剪枝与量化、硬件加速等。此外,对未来目标检测技术的发展趋势进行了展望,强调了技术优化、跨领域融合和应用拓展的重要性。
2025-08-15 17:17:38 40KB 目标检测 计算机视觉
1
(2条消息) 第一章:计算机基础知识——知识点整理_爱睡觉的小馨的博客-CSDN博客.pdf
2025-08-12 14:15:59 54.04MB
1