LCC谐振变换器在MATLAB和PLECS两种仿真软件中的开环与闭环仿真过程。首先简述了LCC谐振变换器的基本概念及其应用场景,然后分别讲解了在MATLAB和PLECS中如何搭建LCC谐振变换器的开环与闭环模型,设定了不同的输入输出电压参数(如250V与41kV,530V与66kV),并提供了详细的仿真步骤和示例代码。最后,通过对仿真结果的分析,整理成Word文档,帮助读者更好地理解和应用仿真结果。 适合人群:从事电力电子研究和技术开发的专业人士,尤其是对LCC谐振变换器感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解LCC谐振变换器的工作原理及其仿真的技术人员。通过学习本文,读者能够掌握在MATLAB和PLECS中进行LCC谐振变换器建模与仿真的具体方法,从而为实际项目提供理论支持和技术指导。 其他说明:文中不仅提供了详细的仿真步骤和示例代码,还附带了Word文档,记录了仿真过程中遇到的问题及解决方案,有助于读者快速上手并解决实际操作中的难题。
2025-09-20 10:26:45 1.04MB 电力电子 MATLAB PLECS
1
LCC谐振变换器多种仿真参数详解:开环与闭环、MATLAB与plecs仿真,输入输出电压分析,LCC谐振变换器多种仿真及参数详解:涵盖开环与闭环、MATLAB与Plecs仿真,附Word文档说明,LCC谐振变器开环和闭环仿真都有,MATLAB和plecs仿真都有,有两种参数,输入输出分别是250V和41kV,还有就是530V 66kV,并且附有Word文档说明。 ,LCC谐振变换器; 仿真类型(开环、闭环); MATLAB仿真; PLECS仿真; 参数(250V、41kV; 530V、66kV); Word文档说明。,LCC谐振变换器仿真研究:多参数对比及高电压下的MATLAB与PLECS仿真分析
2025-09-20 10:18:16 2.01MB 数据结构
1
"M3C模块化多电平矩阵变换器仿真研究:双调制策略下的输入输出特性与海上风电风力发电配网运行方案",模块化多电平矩阵变器(M3C)仿真两个,包含最近电平逼近调制和载波移相调制, 输入50 3Hz 2021a版本 输出50Hz 适用于海上风电 风力发电 配网运行方案。 ,M3C仿真;最近电平逼近调制;载波移相调制;输入50 3Hz 2021a版本;输出50Hz;海上风电;风力发电;配网运行方案,"M3C仿真研究:双调制策略下海上风电配网运行优化" 本文深入探讨了M3C模块化多电平矩阵变换器(MMC)的仿真研究,重点关注了双调制策略下的输入输出特性,并结合海上风电风力发电配网运行方案。M3C作为一类新型的电力电子装置,能够实现高效率和大容量的功率转换。在海上风电这种特定应用背景下,M3C的稳定性和可靠性对于整个电力系统至关重要。 在仿真研究中,M3C采用了两种重要的调制策略:最近电平逼近调制和载波移相调制。这两种调制方式在电力电子领域中应用广泛,它们能够有效提高电力变换器的性能。最近电平逼近调制通过选择最接近参考信号的电平来生成开关信号,从而最小化开关频率和降低损耗。而载波移相调制则是通过改变载波之间的相位差来减少输出电压的谐波含量,提升输出电能的质量。 文章中提到的仿真输入频率为50Hz,这表明研究考虑的是标准工频电力系统。仿真过程中使用的软件版本为MATLAB 2021a,这说明在最新的仿真平台上对M3C的性能进行了评估。仿真输出则为50Hz的频率,这是配网运行所要求的标准频率,尤其适合海上风电和风力发电系统,因为这些系统的输出电能需要符合电网的通用标准以实现并网。 海上风电作为可再生能源的一种,具有巨大的发展潜力和环境优势。由于海上风电场往往远离陆地,因此需要一种高效的电力转换系统将风能转换为电能,并通过海底电缆传输至陆地电网。M3C因其模块化设计和多电平结构,在处理电压波动、频率变化以及提供稳定电力输出方面表现出色,这对于海上风电配网运行至关重要。 风力发电配网运行方案涉及将风力发电机组产生的电能通过变电所和输电线路分配至各个用户和电网。在这一过程中,M3C的使用可以提高电能质量和传输效率,同时减少能量损失。由于风力发电的间歇性和不稳定性,M3C能够提供灵活的电力调节能力,对电网进行动态响应,从而确保电力系统的稳定运行。 此外,文档中提到的图片文件(如3.jpg、6.jpg等),虽未具体描述内容,但可以推测它们可能与M3C仿真模型的结构、波形图、实验结果或其他视觉化数据有关。这些图片对于理解M3C的工作原理和仿真效果至关重要,有助于直观地展示仿真过程和结果。 本研究通过仿真分析了M3C在海上风电和风力发电配网运行中的应用,探讨了双调制策略对提高电能质量和系统稳定性的影响。研究结果将为电力系统工程师提供宝贵的参考,有助于优化风力发电系统的运行性能,推动可再生能源的高效利用。
2025-09-19 14:43:10 1.28MB
1
"计算机硬件技术微型机输入输出与接口技术完整" 本资源主要讲解微型机输入/输出与接口技术,涵盖输入/输出系统概述、中断系统、输入/输出方法、微型机接口技术等方面。 一、输入/输出系统概述 输入/输出系统是计算机硬件技术的重要组成部分,具有实时性、设备无关性和异步性三个特点。输入/输出系统的主要功能包括数据缓冲、数据类型和格式的转换、控制功能、传送主机命令、程序中断、地址译码和反应设备的工作状态。 二、中断系统 中断系统是计算机硬件技术的另一个重要组成部分,中断是计算机中一个非常重要的概念。在计算机执行程序的过程中,由于出现某个特殊情况(或称为“事件”),使得CPU暂时中止现行程序,而转去执行处理特殊事件的处理程序,处理完毕之后再回到原来程序的中断点继续向下执行,这个过程就是中断。 中断系统可以分为内部中断和外部中断两种。内部中断也叫做软件中断,是由CPU执行软中断指令引起的。外部中断也叫做硬件中断,是由外部中断源向CPU提出中断请求而引起的。 中断系统还具有优先级机制,可以通过软件排优或硬件排优来确定中断的优先级。中断服务程序是根据中断源提供的中断类型号,可以在中断向量表中查出要执行的中断服务程序的入口地址,从而执行相应的中断服务程序。 三、输入/输出方法 输入/输出方法是计算机硬件技术的另一个重要组成部分,包括串行输入/输出、并行输入/输出、同步输入/输出和异步输入/输出等。输入/输出方法的选择取决于具体的应用场景和系统设计要求。 四、微型机接口技术 微型机接口技术是计算机硬件技术的另一个重要组成部分,包括微型机输入/输出接口、微型机存储器接口和微型机总线接口等。微型机接口技术的主要功能包括数据缓冲、数据类型和格式的转换、控制功能、传送主机命令、程序中断、地址译码和反应设备的工作状态。 本资源对微型机输入/输出与接口技术进行了详细的讲解,对计算机硬件技术的学生和从业人员具有很高的参考价值。
2025-08-30 16:21:14 472KB
1
PatchTST模型:自监督时间序列预测的革新与高精度应用,PatchTST模型:基于Transformer的自监督时间序列预测模型,单多输入输出兼顾,局部特征与多维序列的精确表征,PatchTST模型无监督、自监督(Patch Time series Transformer)时间序列预测。 单输入单输出,多输入多输出,精度极高。 该模型基于基础transformer模型进行魔改,主要的贡献有三个: 1.通过Patch来缩短序列长度,表征序列的局部特征。 2.Channel Independent的方式来处理多个单维时间序列 3.更自然的Self-Supervised 方式 ,PatchTST模型;自监督;时间序列预测;Patch;多输入多输出;高精度;局部特征表征;通道独立处理;自然自监督方式。,PatchTST:高效自监督时间序列预测模型
2025-08-27 09:54:05 844KB
1
M3C模块化多电平矩阵变换器仿真研究:双调制策略下的输入输出性能及风力发电配网运行优化方案,模块化多电平矩阵变换器(M3C)仿真:采用近期电平逼近与载波移相调制技术的海上风电与风力发电的配网运行方案,模块化多电平矩阵变器(M3C)仿真两个,包含最近电平逼近调制和载波移相调制, 输入50 3Hz 2021a版本 输出50Hz 适用于海上风电 风力发电 配网运行方案。 ,M3C仿真;最近电平逼近调制;载波移相调制;输入50 3Hz 2021a版本;输出50Hz;海上风电;风力发电;配网运行方案,M3C仿真:多调制方式风力发电配网运行方案
2025-07-25 09:34:51 5.42MB
1
内容概要:本文介绍了基于STM32F103VET6控制器的硬件方案,该方案集成了以太网W5500、CAN总线、多路光耦输入/输出、继电器/可控硅驱动等功能。同时,详细解析了FX3U V10.0版源码,涵盖新增功能如编程口协议和Modbus RTU协议支持,以及大量新指令的引入。文章还讨论了硬件配置、软件源码解析、代码分析与实践等方面的内容。 适合人群:嵌入式系统开发人员、硬件工程师、自动化控制系统设计师。 使用场景及目标:适用于汽车、工业控制、智能家居等领域,旨在帮助开发者理解和实现复杂控制逻辑,提高系统的智能化和灵活性。 其他说明:文中提到的源码和硬件方案不仅提供了详细的注释和丰富的指令,还展示了如何通过不同通信协议实现设备间的高效数据交互。
2025-07-03 22:20:18 2.38MB
1
在qtreewieget中实现右击菜单,用qtreewidget模仿visionpro实现算子输入输出关系显示,拖动Item变换当前位置或绑定输入输出关系,拖动item移动算子位置同时更新输入输出箭头位置,实现按住Ctrl+F键来搜索算子名,若搜索到,则高亮显示。详见链接:https://blog.csdn.net/weixin_43935474/article/details/130013613?spm=1001.2014.3001.5501
2025-05-12 11:34:02 14KB qtreewidget
1
在自动化控制系统与数据采集领域,通过计算机编程实现对各种硬件设备的控制是一个核心技术点。C#作为一门功能强大的编程语言,在工业自动化领域也得到了广泛应用,特别是在与数据采集卡(简称板卡)的交互中。数据采集卡是一种能够将外界物理信号转换为计算机能够处理的数字信号的硬件设备,其主要功能包括模拟量的输入与输出(AI/AO)。 本篇文档所涉及的是C#编程环境下调用National Instruments(简称Ni)公司制造的板卡,执行模拟量的输入输出任务。Ni公司以其高性能的数据采集设备闻名,广泛应用于测试测量、工业自动化及科学研究领域。该文档通过四个实验案例详细演示了如何在C#环境下实现对Ni数据采集卡的编程控制。 【实验1】聚焦于实现单一数据点的模拟量输入。这涉及到如何通过编程接口从特定的AI通道(例如AI0)读取一个模拟信号的当前值。在工业自动化过程中,这一操作非常关键,因为许多决策过程依赖于实时数据的采集与分析。 【实验2】则进一步要求程序能够连续读取AI0通道的多个数值。这一实验有助于理解如何采集一定时间窗口内的连续数据,这对于趋势分析和过程监控是至关重要的。在数据密集型应用中,能够实现快速、准确地多点数据采集是一个关键的能力。 【实验3】展示了如何通过Ni数据采集卡进行单次模拟量输出。这在需要根据系统输入动态调整输出信号时非常有用,例如在反馈控制系统中,根据采集到的信号调整输出,以达到某种期望的系统状态。 【实验4】则将模拟量输出的应用场景扩展到了连续输出,并以输出一个正弦曲线为例。这种类型的输出控制在工业自动化中十分常见,尤其在需要模拟变化过程或连续信号的场合。通过这样的实验,开发者可以深入理解如何生成连续、动态变化的模拟信号,并将其输出到外部设备,完成复杂控制任务。 在实际应用中,这些技术点能够组合使用,实现更为复杂的控制逻辑。例如,可以先通过实验1和2读取环境信号,然后根据信号的变化通过实验3和4调整输出信号,以实现闭环控制。这在温度控制、压力调节、流量控制等多个领域都有广泛的应用。 此外,文档中还包含了Ni6008DemoPli的信息。虽然未详细说明,但“DemoPli”可能指的是演示软件或示例代码文件,它可能包含了用于演示如何使用Ni板卡的完整示例程序或代码片段。这对于学习如何利用Ni板卡执行特定任务的开发者来说是一个宝贵的资源,能够帮助他们快速上手并实现自己的项目需求。 通过这些实验案例的展示,文档不仅提供了对C#调用Ni板卡进行数据采集任务的直观理解,还为实际项目开发提供了重要的参考。开发者可以通过这些实验步骤,掌握如何在C#环境中有效地与Ni板卡交互,实现从基本到高级的各种模拟量输入输出功能。
2025-05-08 20:47:15 3.15MB
1
Buck电路,也被称为降压转换器,是一种常用的直流-直流(DC-DC)转换电路,主要用于将高电压转换为低电压,适用于电源管理和电子设备的供电系统。它的工作原理基于电感器储能和二极管导通的特性,能够有效地提供稳定的输出电压,即使输入电压有所变化。 在Buck电路中,主要元件包括开关晶体管Q1(通常为MOSFET)、电感L、二极管D1和滤波电容C。电路的工作过程可以分为两个阶段:导通阶段和截止阶段。 1. **导通阶段**: - 当开关Q1导通时,输入电源Vin通过Q1向电感L供电,此时电流iL线性增加。电流线性增加是因为电感的特性决定其两端电压与电流变化率成正比(V=Ldi/dt)。电感L存储能量,同时负载R上的电流Io开始流动,输出电压Vo是Vin减去电感L和负载R压降的组合,即Vo = Vin - (iL * RL),这里假设RL为负载电阻。由于电容C在充电状态,其电压is逐渐升高,二极管D1承受反向电压,不导通。 2. **截止阶段**: - 当开关Q1关闭后,电感L中的电流不能突然中断,因此会通过二极管D1继续流向负载R,形成一个反向电流。由于电感的自感效应,其两端电压极性反转,这样D1导通,电流iL保持不变,继续通过负载R,而电容C开始放电,维持输出电流Io的连续性。在这个阶段,输入电流is为零,因此总电流is是脉动的,但由于电容C的滤波作用,输出电流Io变得连续且平滑。 Buck电路的输出电压Vo可以通过调整开关Q1的占空比D(导通时间ton与周期Ts的比例)来控制。增大D可以使Vo上升,反之则下降。理想情况下,当D=1时,Vo=Vin,Buck电路相当于一个直接连接;当D=0时,Vo=0,电路断开。 输出电压Vo和输入电压Vin之间的关系可由以下公式给出: \[ Vo = Vin \cdot D \] 而输出电流Io与输入电流Is之间的关系则是: \[ Io = Is \cdot D \] 通过优化Buck电路的设计,可以实现高效率、低纹波和快速动态响应,使其在各种应用中广泛使用,例如笔记本电脑、手机充电器、LED驱动器和工业电源系统等。同时,Buck电路还可以与其他拓扑结构(如Boost、Buck-Boost等)结合,以满足更复杂的电源转换需求。
2025-04-28 20:46:15 86KB buck电路
1