Word文档,含完整代码cpp文件,可运行,优秀课设。 针对石子合并问题,本文利用动态规划算法寻求石子合并时的最大,最小得分,选择相邻的两堆石子堆进行合并,其最终花费的代价与石子堆的排列顺序有关。根据其重叠子问题建立状态转移方程,利用程序进行求解。算例结果显示:将4堆石子合并成一堆,每堆的石子个数分别是4,4,5,9,合并的代价最小得分为43,最大得分为54。 针对运动员最佳配对问题,本文利用回溯法寻求竞赛优势得分最优解,研究男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。针对这一问题,本题采用的是男运动员选女运动员的方法,构成了一棵排列树。树的结点表示女运动员,排列树的层数表示男运动员,经过算法处理后,输出符合最优值的编号。算例结果显示:男1号和女1号组合、男2号和女3号组合,男3号和女2号组合,竞赛优势最大。该算法简便、易懂,又有比较好的实用性和技巧性。
问题描述: 羽毛球队有男女运动员各n人。给定2 个n×n矩阵P和Q。P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势;Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势。由于技术配合和心理状态等各种因素影响,P[i][j]不一定等于Q[j][i]。男运动员i和女运动员j配对组成混合双打的男女双方竞赛优势为P[i][j]*Q[j][i]。设计一个算法,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。 编程任务: 设计一个优先队列式分支限界法,对于给定的男女运动员竞赛优势,计算男女运动员最佳配对法,使各组男女双方竞赛优势的总和达到最大。 数据输入: 第一行有1 个正整数n (1≤n≤20)。接下来的2n行,每行n个数。前n行是p,后n行是q。 结果输出: 输出计算出的男女双方竞赛优势的总和的最大值。
1