道路交通拥堵检测是一个重要的智能交通系统组成部分,它能够帮助及时发现道路状况,预测交通流量,从而采取相应的交通管理措施,以减少交通拥堵情况的发生。本文档提供了用于目标检测的道路交通拥堵检测数据集,该数据集以YOLO和VOC格式组织,共有2923张标注图片,每一幅图像都对应有一个XML格式的标注文件以及一个TXT格式的标注文件。这种格式化设计使得数据集既适用于YOLO(You Only Look Once)这类流行的目标检测框架,又兼容VOC(Pascal VOC)数据集格式,便于研究者和开发者在目标检测和图像识别领域进行实验和训练。 数据集的结构设计合理,分为三个主要文件夹:“JPEGImages”,“Annotations”,和“labels”。其中,“JPEGImages”文件夹存储的是包含交通拥堵状况的原始图片;“Annotations”文件夹包含了与图片一一对应的XML格式的标注文件,文件中记录了每个目标物体的详细信息,例如物体的位置、大小等;“labels”文件夹则包含了TXT格式的文件,每个TXT文件对应一个图片文件,记录了图像中的目标及其类别,提供了YOLO格式的标注信息,便于直接用于YOLO网络模型的训练。 数据集中的标签种类单一,只有一个标签“traffic_jam”,用于识别交通拥堵场景。根据提供的信息,此标签下的框数为3489,总框数也是3489,表明每一幅图片中均标注了交通拥堵的情况,且同一幅图片中可能包含多个拥堵区域。标签的形状为矩形框,这与目标检测领域常用的目标框(bounding box)一致。 此外,文档还特别提到了数据集的分辨率和清晰度,2923张图片均为清晰图片,但没有进行图像增强处理。分辨率以像素表示,尽管未给出具体数值,但通常交通图像的分辨率足够高,以便识别和分析道路上的各种情况。数据集的类型标记为119m,这可能是指数据集的版本或者是某种特定的分类代码。 值得指出的是,文档中提到本数据集不保证训练得到的模型或权重文件的精度,这意味着数据集的使用者需要对所使用的数据和训练过程负责,并自行评估模型的实际表现。在实际应用中,为了确保模型的准确性,通常需要进行大量的数据预处理和模型调优工作。 文档还提到了标注示例或图片概览,这部分内容有助于用户直观了解数据集的标注质量,并可以作为模型训练前的数据质量检查参考。 这是一个专门为道路交通拥堵检测设计的YOLO+VOC格式数据集,它提供了丰富的标注图片资源和标注信息,有助于研究人员和开发者构建和训练有效的交通拥堵识别模型。同时,清晰的结构和单一的标签设计也便于模型训练和评估工作。但是,用户需要自行对训练结果负责,并在使用数据集前进行充分的测试和调优。
2025-09-09 16:48:10 5.13MB 数据集
1
道路交通拥挤检测数据集是专门用于训练和测试计算机视觉模型在道路交通场景下识别和检测交通拥挤状态的资源。本数据集采用Pascal VOC格式和YOLO格式,包含1899张jpg格式的图片,每张图片都配有对应的VOC格式的xml文件和YOLO格式的txt文件。这些文件共同组成了数据集的标注信息,用于指导模型进行学习和训练。 在本数据集中,标注的对象为“crowd”,即人群,数据集中的所有标注都围绕这个类别进行。VOC格式的xml文件中包含了每个图片中“crowd”出现的位置和相关信息,而YOLO格式的txt文件则提供了另一种格式的标注信息,YOLO是一种流行的实时目标检测系统,它的标注格式适用于其特有的检测模型训练。 数据集中的图片数量、xml标注文件数量以及txt标注文件数量都是1899个,这表明数据集中的每张图片都进行了相应的标注。标注类别数为1,说明数据集中仅关注“crowd”这一个类别,标注类别名称为“crowd”。每个“crowd”标注的框数总计为2273个,这意味着在1899张图片中,人群被识别并框出共2273次,从而提供了足够的训练样本。 数据集采用的标注工具是labelImg,这是一个常用的手动标注工具,它允许标注者通过画矩形框的方式精确地标出图片中的目标。标注规则清晰明确,即对“crowd”类别进行画矩形框,这有助于训练出来的模型在识别场景中人群时更为准确。 关于使用本数据集的声明,出品方强调不对由此数据集训练出的模型或权重文件的精度提供任何保证。这表明数据集的使用者需要自行负责模型的训练和测试,数据集的提供方不承担责任。同时,数据集本身只保证提供的标注信息是准确且合理的。 此外,数据集提供了一个图片预览以及标注例子,以便潜在的使用者可以了解数据集的结构和内容,以及如何进行标注。数据集还有一个明确的数据集地址,方便使用者下载所需的数据文件进行研究和开发。 道路交通拥挤检测数据集VOC+YOLO格式是一个专门为道路交通拥挤状态的检测和识别而设计的数据集。它以标准化的格式提供了一系列经过精确标注的图片资源,适用于训练机器学习和深度学习模型,以提升模型在实时交通监控和管理中的性能和准确性。通过使用这个数据集,研究者和开发者能够构建更加智能化的交通拥挤检测系统,进而帮助改善城市交通状况和提高公共安全水平。
2025-09-09 16:47:40 1011KB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144155983 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1899 标注数量(xml文件个数):1899 标注数量(txt文件个数):1899 标注类别数:1 标注类别名称:["crowd"] 每个类别标注的框数: crowd 框数 = 2273 总框数:2273 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无 特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注
2025-09-09 16:42:18 407B 数据集
1
YOLO(You Only Look Once)是一种广泛应用于目标检测领域的深度学习模型,因其高效和实时性而备受关注。在这个数据集中,我们聚焦于“道路指路牌”和“前方施工标识”两个类别,这对于自动驾驶系统至关重要。自动驾驶车辆需要准确识别这些标志以确保安全行驶。 数据集的构建通常分为三个阶段:数据收集、数据标注和模型训练。在这个案例中,数据收集通过网络爬虫完成,这意味着图片可能来源于多个在线来源,涵盖了各种不同的场景和条件,增加了模型的泛化能力。数据标注则采用labelimg工具,这是一个用于图形界面标注的开源软件,能够方便地将图像中的目标边界框转换为YOLO格式的标注文件。YOLO格式的标注包含每个目标的类标签、中心坐标和宽高,便于模型理解和学习。 训练集包含500张图片,这样的规模足够支持模型初步学习和理解两类目标的特征。验证集则有90张图片,它的作用是评估模型在未见过的数据上的性能,帮助调整超参数并避免过拟合。合理的数据集划分是防止模型在特定数据上表现过好,而在实际应用中效果不佳的关键。 对于自动驾驶系统来说,目标检测是核心能力之一。道路指路牌提供了方向信息,前方施工标识则警示潜在危险。准确检测这些标志对于自动驾驶车辆的路径规划、速度控制以及决策制定至关重要。YOLO模型由于其快速的检测速度和相对较高的精度,成为了这类应用的理想选择。 在训练过程中,可能需要对数据进行预处理,如归一化、增强等,以提高模型的鲁棒性。此外,可能还需要调整YOLO模型的结构,如增加或减少卷积层,改变网络的宽度和深度,或者使用不同的损失函数来优化训练过程。模型训练完成后,会进行验证集上的评估,常见的指标包括平均精度(mAP)、精确率、召回率等。 总结来说,这个数据集提供了一个研究和开发自动驾驶中目标检测技术的良好平台,特别是针对道路标志识别。通过利用YOLO模型和深度学习的力量,我们可以期待更智能、更安全的自动驾驶系统。开发者和研究人员可以在此基础上进一步优化模型,提升目标检测的精度和速度,为未来的智能交通系统奠定坚实的基础。
2025-08-21 15:34:24 112.18MB 数据集 自动驾驶 YOLO 目标检测
1
资源下载链接为: https://pan.quark.cn/s/27e1210fbf58 SHP文件是一种由ESRI公司开发的ArcGIS软件专用的矢量数据格式,主要用于存储地理空间信息,涵盖点、线、面等几何对象。在2022年7月版本的云南省地理信息资料包中,详细记录了云南省的行政区划(包括省、市、县三级)、道路网和公路网等数据。 其中,云南省.dbf文件是该数据集的核心,它存储了省级行政边界的属性信息,如行政级别、代码、名称等,这些信息可用于地理统计和分析,例如人口分布和经济状况的区域比较。此外,云南省_市.dbf和云南省_县.dbf文件分别记录了地市级和区县级的行政边界数据,这些数据在城市规划、政策制定和资源分配等方面具有重要意义。在GIS环境中,行政边界数据可与其他社会经济数据叠加,用于研究不同行政级别的地域特征。 交通网络部分的数据由云南省_roads.dbf和云南省_railways.dbf文件提供。云南省_roads.dbf文件包含云南省内的主要公路和道路信息,如高速公路、国道、省道等;而云南省_railways.dbf文件则涵盖了云南省的铁路线路信息。这些交通网络数据对于交通规划、物流分析和城市交通研究至关重要。DBF文件中的属性信息可能包括道路类型、等级、长度、车道数等,有助于进一步分析交通流量、通勤模式以及优化交通基础设施。 此外,prj文件(如云南省.prj、云南省_市.prj等)记录了数据的空间参考坐标系统,确保所有地理信息能够在地图上正确定位,例如采用中国2000国家大地坐标系,从而在GIS软件中准确展示云南省的地理位置。 这些SHP文件及相关数据在GIS领域应用广泛。学者、政策制定者和商业机构可以利用这些资料进行空间分析,如计算距离、缓冲区分析、人口覆盖范围预测等,也可用于地图制作、灾害风险评估、环境影响分析和城市规划等多个领域。该数据包提供了全面
2025-08-17 21:07:23 272B 云南省行政区划
1
道路缺陷数据集是针对目标检测领域,特别是道路缺陷识别任务而设计的一组训练和测试数据。这些数据集以VOC格式和YOLO格式提供,每种格式都包含有图片和对应的标注文件,共计5000张jpg格式的图片及其标注。VOC格式的标注包含XML文件,YOLO格式则包含TXT文件。数据集涵盖了八种道路缺陷类别,分别是井盖、修补网、修补裂缝、坑洼、裂缝、修补坑洼、网状结构及其他。这些类别对应于道路养护和维护工作中的常见问题。每种类别都有相应的矩形框标注,用以指定图像中缺陷的具体位置。例如,裂缝类别中,共有1656个矩形框标注,而井盖类别中则有4164个标注,每张图片可能包含多个缺陷类别,因此总框数为10776。 该数据集使用了labelImg这一常用的图像标注工具来完成所有图片的标注工作,标注工具的选择保证了标注的准确性和一致性。标注规则规定,对于每一种缺陷类别,都应画出矩形框来明确缺陷的位置。整个数据集的标注工作严格按照这个规则来执行,确保了数据的质量和可用性。 数据集的具体结构包括5000个jpg格式的图片,5000个VOC格式的XML标注文件和5000个YOLO格式的TXT标注文件。每张图片都有一对对应的XML和TXT标注文件,其中XML文件详细描述了图片中每个缺陷的位置和类别信息,而TXT文件则提供了相同信息,但格式适用于YOLO系列的目标检测模型。这种格式的兼容性使得数据集可以广泛应用于深度学习和计算机视觉的实验研究。 需要注意的是,尽管该数据集提供了大量的标注数据,但制作者明确指出不对由该数据集训练得到的模型或权重文件的精度作任何保证。这样的声明提醒使用者,虽然数据集提供了准确且合理的标注,但模型训练和验证结果还受到多种因素的影响,包括模型的选择、训练策略、数据增强技术等。 这个道路缺陷数据集为研究人员和工程师提供了一个宝贵的资源,用于研究和开发能够自动识别和分类道路缺陷的算法。这样的技术对于实现道路智能巡检、自动化维护规划等领域具有重要意义,有助于提高道路维护工作的效率和质量。
2025-07-31 17:15:13 732KB 数据集
1
YOLOv5是一种高效且准确的目标检测模型,尤其在实时应用中表现出色。该模型是YOLO(You Only Look Once)系列的最新版本,由Joseph Redmon等人在2016年首次提出,随后经过多次优化升级。YOLOv5在前几代的基础上提升了速度和精度,使得它成为计算机视觉领域广泛使用的工具。 道路破损识别是利用AI技术来自动检测道路上的裂缝、坑洼等损坏情况。这对于城市基础设施维护和道路安全具有重要意义,可以减少人力成本,提高工作效率。在这个项目中,YOLOv5被应用于这个特定的任务,通过训练模型学习道路破损的特征,然后在新的图像上进行预测,标记出可能存在的破损区域。 为了实现道路破损识别,首先你需要搭建一个YOLOv5的运行环境。这通常包括安装Python、PyTorch框架以及相关的依赖库,如CUDA(如果要在GPU上运行)和imageio等。确保你的系统满足YOLOv5的硬件和软件要求,例如足够的GPU内存和兼容的CUDA版本。 接着,项目提供了一些预训练的权重文件,这些文件包含了模型在道路破损数据集上学习到的特征。你可以直接使用这些权重进行预测,无需再次训练。只需加载模型,并将待检测的图像输入模型,模型就会输出包含破损位置的边界框。 如果你想要对数据集进行自定义标注或训练,你需要获取并处理道路数据集。据描述,这个数据集大约12GB,可能包含了大量的图像和对应的标注信息。使用labelImg等工具可以方便地进行图像标注,将道路破损的位置以XML文件的形式记录下来。之后,这些标注文件将用于训练YOLOv5模型。 训练过程涉及数据预处理、划分训练集和验证集、配置YOLOv5的训练参数(如学习率、批大小、训练轮数等),并使用PyTorch的`train.py`脚本来启动训练。训练过程中,模型会逐步学习并优化其权重,以更好地识别道路破损。 训练完成后,你可以使用`test.py`脚本对模型进行评估,或者用`inference.py`进行实时检测。通过调整超参数和网络结构,可以进一步优化模型性能,达到更高的识别精度和更快的检测速度。 YOLOv5道路破损识别项目是一个结合了深度学习、计算机视觉和实际应用的案例。通过理解YOLOv5的工作原理,掌握数据处理和模型训练的流程,我们可以利用AI技术解决实际世界的问题,为城市管理和公共安全贡献力量。
2025-07-23 22:22:39 844.51MB 数据集 YOLO 人工智能
1
道路缺陷检测数据集是专门为道路缺陷识别和分析开发的,其核心作用在于通过机器学习、计算机视觉等技术手段提升道路维护效率,减少交通事故,保障公共安全。这类数据集通常包含大量标注过的道路缺陷图片,以及与之对应的.json格式的标注文件。这些标注文件记录了图像中的缺陷位置、类型等关键信息,为研究者和开发者提供了进行模型训练和评估的第一手资料。 在该数据集中,每一对道路缺陷检测数据包括一张.jpg格式的高清晰度道路图片和一个相应的.json标注文件。这些数据共同组成了一个包含500对样本的集锦,为道路缺陷检测算法提供了充足的学习和验证材料。通过使用这个数据集,研究人员可以训练和测试各种图像处理算法,例如边缘检测、图像分割和缺陷分类等。 该数据集对于智慧城市基础设施的维护具有重要的现实意义。利用这些数据,可以开发出能够自动识别和报告道路缺陷的智能系统,从而提高道路养护的效率和响应速度。这些系统可以在减少人工检查成本的同时,确保道路的安全性,延长道路的使用寿命。 此外,这个数据集不仅限于道路检测的应用,还可以扩展到其他类似的视觉检测任务中。例如,它可以用于铁路、机场跑道等其他基础设施的缺陷检测。这表明道路缺陷检测数据集具有较高的通用性和适用性,有望在更广泛的领域内发挥作用。 数据集的精确和多样性是其重要的品质指标。为此,数据集中包含的道路缺陷类型应覆盖裂缝、坑洼、隆起、油污、异物等多种常见问题。通过多样化的缺陷类型,数据集能够提供丰富的信息,帮助算法学习如何识别和分类不同类型的缺陷。同时,数据集的创建者需要确保所选取的道路图片具有足够的代表性,以便算法能够适应各种光照条件、天气状况和道路材质。 在实际应用中,数据集的使用需要一定的技术背景知识。使用者需要具备图像处理和机器学习的基本理论知识,以及至少一种相关编程语言的编程技能,如Python。此外,了解如何使用深度学习框架如TensorFlow或PyTorch,对于利用这些数据进行算法开发至关重要。 对于希望改善或开发新型道路缺陷检测系统的研究人员、工程师和开发人员来说,道路缺陷检测数据集是宝贵的学习和研究资源。通过这个数据集的实践,他们不仅可以提升现有检测技术的准确性,还能探索新的检测方法,进而为道路安全和智能交通系统的建设作出贡献。
2025-07-23 22:17:06 31.45MB 数据集
1
"道路病害检测数据集:包含5万3千张RDD图像,多类型裂缝与坑槽的精准识别,已划分训练验证集,支持YOLOv5至v8模型直接应用,Yolov8模型map值达0.75,高清1920x1080分辨率",道路病害检测数据集 包含rdd一共 5w3 张 包含:横向裂缝 0、纵向裂缝 1、块状裂缝 2、龟裂 3 、坑槽 4、修补网状裂缝 5、修补裂缝 6、修补坑槽 7 数据集已划分为训练集 验证集 相关YOLOv5 YOLOv6 YOLOv7 YOLOv8模型可直接使用的 Yolov8map值 0.75 1920*1080 ,道路病害检测; RDD数据集; 横向裂缝; 纵向裂缝; 块状裂缝; 龟裂; 坑槽; 修补网状裂缝; 修补裂缝; 修补坑槽; 数据集划分; YOLOv5; YOLOv6; YOLOv7; YOLOv8模型; Yolov8map值; 分辨率1920*1080,基于道路病害识别的多模式裂缝数据集(含YOLOv5-v8模型应用)
2025-07-23 21:58:53 415KB scss
1
ISO 34505:2025《道路车辆 自动驾驶系统测试场景 场景评价与测试用例生成》
2025-07-09 12:20:39 21.52MB 自动驾驶
1