基于NGSIM数据集(i-80和US101高速公路)的驾驶风格特征提取与高斯聚类分析方法。首先,通过对原始数据进行预处理,包括数据清洗、去除异常数据(如幽灵车辆)以及应用对称指数移动平均滤波算法(sEMA),确保数据的质量。接着,制定了详细的换道工况下的驾驶风格特征表,提取了三个关键特征:方向盘熵值、加速度方差和车道入侵指数,并进行了特征相关性分析。然后,利用高斯混合模型(GMM)进行聚类分析,得到了三种不同的驾驶风格类别:佛系组、战斗组和普通组。此外,还展示了代码的扩展性,可以通过简单的修改支持其他聚类算法,如SVM和K-means。实验结果显示,高斯聚类的效果优于其他方法,证明了所提方法的有效性和鲁棒性。
适合人群:交通工程研究人员、自动驾驶算法开发者、数据分析专家。
使用场景及目标:适用于需要从大规模交通数据集中提取驾驶风格特征并进行分类的研究项目。主要目标是识别不同驾驶风格的特点,为交通安全分析、智能交通系统优化提供依据。
其他说明:文中提供了具体的代码实现细节,便于读者复现实验结果。同时,强调了数据预处理和特征选择的重要性,指出这些步骤对于提高聚类效果的关键作用。
1