基于NGSIM数据集(i-80和US101高速公路)的驾驶风格特征提取与高斯聚类分析方法。首先,通过对原始数据进行预处理,包括数据清洗、去除异常数据(如幽灵车辆)以及应用对称指数移动平均滤波算法(sEMA),确保数据的质量。接着,制定了详细的换道工况下的驾驶风格特征表,提取了三个关键特征:方向盘熵值、加速度方差和车道入侵指数,并进行了特征相关性分析。然后,利用高斯混合模型(GMM)进行聚类分析,得到了三种不同的驾驶风格类别:佛系组、战斗组和普通组。此外,还展示了代码的扩展性,可以通过简单的修改支持其他聚类算法,如SVM和K-means。实验结果显示,高斯聚类的效果优于其他方法,证明了所提方法的有效性和鲁棒性。 适合人群:交通工程研究人员、自动驾驶算法开发者、数据分析专家。 使用场景及目标:适用于需要从大规模交通数据集中提取驾驶风格特征并进行分类的研究项目。主要目标是识别不同驾驶风格的特点,为交通安全分析、智能交通系统优化提供依据。 其他说明:文中提供了具体的代码实现细节,便于读者复现实验结果。同时,强调了数据预处理和特征选择的重要性,指出这些步骤对于提高聚类效果的关键作用。
2025-09-13 13:59:03 1.52MB 特征提取 数据预处理
1
official_classification.py : 使用了较多的sklearn中提供的聚类函数 self_classification.py : 使用了较多的手写聚类函数(手写高斯聚类由于计算高维矩阵n次方报错,就没有使用) 两者可以相互比较看手写函数效果如何。 model.py : 其中包含了kmeans,lvq,mixture-of-gaussian聚类函数,以及计算精度和NMI的手写函数,处理标签映射的匈牙利算法。 由于学习向量量化是依据ground truth的得到的一组原型向量,是有监督的学习,因此计算其精度没有意义,在函数里就没有计算精度和NMI,只打印出了原型向量 函数运行时会有warning,不用在意,手写的函数没有优化,速度较慢 代码对三个数据集,分别使用了kmeans,lvq,mixture-of-gaussian三个方法,在得到预测标签后,采用匈牙利算法对标签进行处理,计算其精确度acc和标准互信息nmi 这三种方法聚类的精度只有百分之五十几,在数据集yale中效果较差 运行方法: 安装相应需求的库,直接运行official_classifica
2022-11-30 03:22:26 6.04MB kmeans 支持向量量化 高斯聚类
1
official_classification.py : 使用了较多的sklearn中提供的聚类函数 self_classification.py : 使用了较多的手写聚类函数(手写高斯聚类由于计算高维矩阵n次方报错,就没有使用) 两者可以相互比较看手写函数效果如何。 model.py : 其中包含了kmeans,lvq,mixture-of-gaussian聚类函数,以及计算精度和NMI的手写函数,处理标签映射的匈牙利算法。 由于学习向量量化是依据ground truth的得到的一组原型向量,是有监督的学习,因此计算其精度没有意义,在函数里就没有计算精度和NMI,只打印出了原型向量 函数运行时会有warning,不用在意,手写的函数没有优化,速度较慢 代码对三个数据集,分别使用了kmeans,lvq,mixture-of-gaussian三个方法,在得到预测标签后,采用匈牙利算法对标签进行处理,计算其精确度acc和标准互信息nmi 这三种方法聚类的精度只有百分之五十几,在数据集yale中效果较差 运行方法: 安装相应需求的库,直接运行official_classifica
2021-07-05 01:14:48 6.04MB kmeans 支持向量量化 高斯聚类
1
压缩包里有三个matlab程序,分别是K-mean聚类、LVQ聚类和混合高斯聚类,数据为两类二维高斯分布的随机点。程序展示了三种聚类算法的基本使用方法。算法原理可以参考周志华《机器学习》的第九章聚类。
2019-12-21 18:56:08 2KB matlab K-mean LVQ mixture
1