Amazon 五星盛誉图书,世界级安全技术专家力作,防火墙技术和入侵检测技术的完美结合。 内容简介   本书创造性地将防火墙技术和入侵检测技术相结合,充分展示开源软件的威力。书中全面阐述了iptables防火墙,并详细讨论了如何应用psad、 fwsnort、fwknop 3个开源软件最大限度地发挥iptables检测和防御攻击的效力。大量真实例子以及源代码更有助于读者理解安全防御的原理、技术和实际操作。   本书讲解清晰且实用性很强,适合Linux系统管理员、网络安全专业技术人员以及广大计算机安全爱好者阅读。 作者简介 Michael Rash世界级的安全技术专家,以防火墙、入侵检测系统等方面的造诣享誉安全界。他是psad, fwknop, and fwsnort等著名开源安全软件的开发者,也是屡获大奖的Dragon入侵防御系统的安全架构师。除本书外,他还与人合撰了Snort 2.1 Intrusion Detection和Intrusion Prevention and Active Response等著作,还是Linux Journal、SysAdmin和;login:等著名技术媒体的专栏作家。
2025-10-08 10:27:28 7.19MB
1
欺诈检测在银行行业中是一项至关重要的任务,因为它直接影响到金融机构的安全和客户的信任。这份"Fraud detection bank dataset 20K records binary.zip"压缩包提供了一个专门用于欺诈检测的银行交易数据集,包含了20,000条记录,数据以二进制格式存储。主要的文件名为"欺诈检测银行数据集.csv",它很可能包含了一系列与银行交易相关的特征和标签,用于训练和评估欺诈检测模型。 我们需要理解这个数据集的基本结构。CSV(Comma Separated Values)文件是一种常见的数据存储格式,通常用于表格数据,每行代表一个样本,列则对应不同的特征或变量。在这个案例中,数据集可能包含以下几类关键信息: 1. **时间戳(Timestamp)**:每一笔交易的时间,这对于检测异常行为至关重要,因为欺诈交易往往在特定时段集中出现。 2. **交易金额(Amount)**:交易涉及的金额大小,欺诈交易可能具有异常的大额或小额特征。 3. **用户ID(Customer ID)**:参与交易的客户标识,通过分析用户的交易模式,可以识别出不寻常的行为。 4. **交易类型(Transaction Type)**:如购买、退款、转账等,不同类型的交易可能有不同的欺诈风险。 5. **地理位置信息(Location Information)**:包括交易发生地的经纬度或城市,可以帮助识别异地交易或其他不寻常的位置模式。 6. **商户信息(Merchant ID)**:与商家关联的信息,某些商家可能更容易成为欺诈的目标。 7. **标签(Label)**:这是二分类问题,每个样本会有一个标签(0或1),表示该交易是否为欺诈。0通常代表正常交易,1代表欺诈交易。 在处理这个数据集时,我们可能需要进行预处理步骤,包括缺失值处理、异常值检测、特征编码(如类别变量的独热编码)以及标准化或归一化数值特征。之后,可以应用各种机器学习算法,如逻辑回归、支持向量机、决策树、随机森林、梯度提升机或者现代的深度学习模型,如神经网络,来进行欺诈检测。 模型训练后,我们需要使用交叉验证来评估模型性能,常用的指标有准确率、召回率、F1分数和AUC-ROC曲线。高召回率意味着模型能够有效地找出大部分欺诈交易,而高准确率则表明模型误报的情况较少。在实际应用中,通常会更注重降低假阳性(误报正常交易为欺诈)以减少对正常客户的打扰。 根据模型的表现,我们可以进行特征重要性分析,了解哪些特征对欺诈检测最为关键,以便优化模型或改进业务流程。同时,持续监控和更新模型以适应欺诈手段的变化也非常重要。 这个数据集为研究和开发银行欺诈检测系统提供了丰富的资源。通过深入分析和建模,我们可以更好地理解和预防金融欺诈,保障银行系统的稳定和客户的财产安全。
2025-09-14 11:50:19 738KB
1
二摘代码MATLAB 使用浅层学习提取天际线 下面列出了我们的论文的完整实现,该代码的两个主要组件取决于Python和Matlab。 , 作者:,,和 要求 代码的浅层学习部分取决于Python和OpenCV。 它已经在虚拟环境中使用Python 3.6.10和OpenCV 4.3.0进行了测试。 而代码的动态编程部分取决于Matlab,并已使用Matlab 2016进行了测试。 数据集 我们已经基于玄武岩,Web和CH1这三个数据集学习了滤波器组,并且还在GeoPose3K数据集上进行了测试。 前三个数据集可以从主目录下载并放置在主目录中。 原始CH1数据集可从authors'获得。 此代码提供的版本仅是为了方便起见,请查阅原始版权和CH1数据集的使用条款。 此外,请从相应的下载GeoPose3K。 GeoPose3K数据集应放置在数据目录中。 供参考,这是我们的目录结构。 data ├── Basalt │ ├── ground_truth │ ├── images ├── CH1 │ ├── cvg │ │ ├── ground_truth │ │ ├── images │ ├─
2025-08-26 10:23:20 86KB 系统开源
1
《Nature封刊》中发表了关于“热辅助探测和测距”(Heat Assisted Detection and Ranging,简称Hardar)技术的研究成果。该技术利用热辅助的方法来增强探测系统的性能,特别是在提高距离和深度测量的精度方面。Hardar技术的一个重要应用是在遥感探测和机器人视觉等领域。 为了支持这一研究,提供了一套数据集和相应的matlab代码,以供研究者下载并进行实验。该数据集包含四个.mat格式的文件,这些文件包含了Hardar技术在不同条件下的输入数据。这些数据对于研究如何处理和分析Hardar系统收集到的信息至关重要。 Matlab是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发、数据分析以及可视化等领域。在这项研究中,Matlab代码的作用是读取这些.mat文件,并将其中的数据作为输入变量。这些输入变量可能包括温度数据、距离数据、反射率数据、时间序列数据等。Matlab代码通过读取和处理这些输入变量,可以帮助研究人员更好地理解和应用Hardar技术,同时也能够进行算法验证和结果分析。 此外,Matlab代码可能还包含了一些预处理步骤,比如滤波、去噪、数据标准化等,以确保数据的质量和后续分析的准确性。通过对这些数据进行深入分析,研究人员可以开发出更加精确的Hardar探测模型,提高探测系统的性能和可靠性。 在使用这些数据和代码之前,研究人员需要确保已经安装了Matlab软件,并且熟悉其基本操作和编程语言。同时,为了更有效地利用这些数据,研究人员还需要有一定的物理背景知识,比如光学、热学和信号处理等相关知识,这样才能够正确理解和解释数据集中的信息。 《Nature封刊》上的这项研究,以及相关的数据集和Matlab代码,为热辅助探测和测距技术的研究提供了重要的工具和资源。这不仅能够推动该技术的研究进展,还能够帮助相关领域的研究者和工程师解决实际问题,推动技术的创新和应用。
2025-07-10 17:45:43 430KB matlab
1
2017-cvpr-《Interspecies Knowledge Transfer for Facial Keypoint Detection》数据集
2025-06-29 00:04:06 70B
1
从别人的java源码中提取方法视频情感检测 这项工作的目的是基于从视频中提取的人脸表情来识别六种情感(幸福,悲伤,厌恶,惊奇,恐惧和愤怒)。 为了实现这一目标,我们正在考虑不同种族,年龄和性别的人,他们每个人在表达情感时的React都非常不同。 我们收集了149个视频的数据集,其中包括来自男性和女性的简短视频,表达了之前描述的每种情感。 数据集是由学生建立的,他们每个人都录制了一个视频,该视频表达了所有的情感,完全没有方向或指示。 一些视频比其他视频包含更多的身体部位。 在其他情况下,视频在背景中的对象甚至具有不同的灯光设置。 我们希望它尽可能通用,没有任何限制,因此它可以很好地表明我们的主要目标。 代码detect_faces.py只是从视频中检测人脸,我们将该视频保存在尺寸为240x320的视频中。 使用此算法会创建不稳定的视频。 这样,我们便稳定了所有视频。 这可以通过代码完成,也可以在线免费获得稳定器。 之后,我们使用稳定的视频并将其通过代码motion_classification_videos_faces.py运行。 在代码中,我们开发了一种基于密集光流(HOF)直方图的特
2025-06-25 20:07:42 7KB 系统开源
1
《传输分集的差分检测方案》是一篇深入探讨无线通信领域的论文,主要关注的是如何通过差分检测技术提升传输分集(Transmit Diversity)系统的性能。该论文由Vahid Tarokh和Hamid Jafarkhani两位知名学者共同撰写,他们在多天线通信系统和空间分集技术方面有着深厚的理论基础和实践经验。 传输分集是一种利用多个发射天线来提高无线通信系统可靠性的技术,其核心思想是通过在不同天线上发送经过精心设计的信号,来分散无线信道中的衰落效应,从而增强接收端的信号质量。差分检测则是一种简化了的检测策略,它不依赖于信道状态信息,而是基于连续两个或多个符号之间的差异来进行信号检测,这使得系统实现起来更为简便。 论文中可能详细讨论了以下几点: 1. **差分检测原理**:阐述了差分检测的基本概念,包括如何通过比较连续符号间的相位或幅度差异来估计信号,以及这种方法如何减少对信道估计的依赖。 2. **传输分集技术**:介绍了多种传输分集技术,如空间分集、时间分集和频率分集,并讨论它们在实际系统中的应用和优缺点。 3. **性能分析**:通过数学模型和仿真结果,分析了差分检测在传输分集系统中的性能,可能包括误码率(BER)、符号错误率(SER)等关键指标,以及与非差分检测方案的比较。 4. **MATLAB仿真代码**:附带的MATLAB代码可能提供了实现论文中提到的差分检测算法的示例,用于验证理论分析和模拟实际系统行为,这对于理解算法工作原理和进行进一步研究非常有价值。 5. **优化与改进**:可能探讨了如何优化差分检测方案以适应不同信道条件,或者提出了新的改进策略以提高系统性能,例如结合其他信号处理技术。 6. **应用场景**:可能讨论了这种差分检测传输分集方案在现代通信系统,如蜂窝网络、Wi-Fi和卫星通信中的潜在应用。 Vahid Tarokh和Hamid Jafarkhani的研究对于理解和实现高效、低复杂度的无线通信系统具有重要贡献。通过阅读这篇论文及其MATLAB仿真代码,读者可以深入了解差分检测在传输分集中的作用,以及如何在实际系统中部署这种技术来提升通信质量。
2025-06-24 17:55:26 149KB Vahid
1
fall_detection 模型生成器 数据源 此模型使用MobiAct数据集的第二版 描述 [feature_extraction]:提供从MobiAct数据集中提取的特征集。 [model_selection]:将带有调整参数的RandomForestClassifier,LogisticRegression和rbf-SVC的性能进行比较。 [real_mode]:训练将要与oli App集成的模型。
2025-06-23 15:25:31 53KB JupyterNotebook
1
This is the readme for applying deep learning for joint channel estimation and detection in OFDM system. 只是其中一部分,另一部分,分开上传,因为太大le The codes have been tested on Ubuntu 16.04 + tensorflow 1.1 + Python 2.7 Dependences: 1. Tensorflow 2. Winner Channel Model Get Start: cd ./DNN_Detection python Example.py
2025-06-19 18:16:59 27KB deep learnin python ofdm
1
### Adaptive Double-Threshold Energy Detection Algorithm for Cognitive Radio #### 摘要与背景 本文提出了一种自适应双阈值能量检测算法(Adaptive Double-Threshold Energy Detection Algorithm, ADTED),该算法针对传统频谱感知算法易受噪声影响的问题进行了改进。在认知无线电系统中,次级用户(Secondary User, SU)可以通过感知频谱空洞来利用未被初级用户(Primary User, PU)使用的频段。因此,频谱感知技术是认知无线电技术的核心,对于提高网络吞吐量和灵活性至关重要。 #### 算法原理 ADTED算法基于传统的能量检测方法,但通过引入自适应双阈值机制提高了性能。该机制允许算法根据观测结果与预设阈值之间的比较,在单轮感知和双轮感知之间自动切换。具体来说: - **单轮感知**:如果观测结果低于较低的阈值,则认为频段未被占用。 - **双轮感知**:如果观测结果位于两个阈值之间,则进行第二次更长时间的感知以提高检测准确性。 - **频谱占用确认**:只有当观测结果高于较高的阈值时,才认为频段被占用。 #### 数学模型与分析 为了评估算法性能,文中推导了检测概率、虚警概率以及感知时间的数学表达式。这些表达式对于理解算法在不同信号噪声比(Signal-to-Noise Ratio, SNR)下的行为至关重要。 - **检测概率**(Probability of Detection, Pd):表示正确检测到初级用户存在的概率。 - **虚警概率**(Probability of False Alarm, Pf):表示错误地将不存在初级用户的频段识别为存在初级用户的情况。 - **感知时间**:完成一次完整感知过程所需的时间。 #### 模拟与实验验证 通过蒙特卡罗模拟方法,对ADTED算法进行了性能验证,并绘制了SNR与检测概率、SNR与感知时间之间的关系图。此外,还在基于GNU Radio和通用软件无线电外设(Universal Software Radio Peripheral, USRP)的真实认知无线电系统上进行了实验验证。实验结果表明,与现有频谱感知方法相比,ADTED算法能够在合理的时间内实现更高的检测概率。 #### 结论 本文提出的ADTED算法通过引入自适应双阈值机制显著提高了认知无线电系统中的频谱感知性能。该算法能够有效应对噪声干扰问题,并在保持合理感知时间的同时,提高了检测准确率。这对于提升认知无线电系统的整体性能具有重要意义。 #### 关键词解析 - **能量检测**(Energy Detection, ED):一种基本的频谱感知方法,通过测量接收信号的能量来判断频段是否被占用。 - **软件无线电**(Software Radio):一种可以由软件定义其功能的无线电通信系统。 - **检测概率**(Probability of Detection, Pd):衡量算法正确检测到初级用户存在的能力。 - **感知时间**(Sensing Time):完成一次频谱感知操作所需的时间长度。 ### 总结 本文详细介绍了一种适用于认知无线电的自适应双阈值能量检测算法。该算法通过对传统能量检测方法的改进,有效地解决了噪声敏感性问题,并在理论分析、模拟仿真及实际测试等多个层面上验证了其优越性。对于进一步提高认知无线电系统的频谱利用率和性能具有重要的理论意义和应用价值。
2025-06-17 20:23:54 399KB 研究论文
1