基于ANSYS Workbench的轴承动力学仿真:内圈、外圈及滚子故障模拟的实践与结果分析,展示凯斯西储大学SKF轴承故障特征频率的研究。,ANSYS WORKBENCH轴承动力学仿真,ANSYS做内圈、外圈和滚子故障的模拟图片为凯斯西储大学SKF轴承内外圈故障的结果,振动加速度包络后故障特征频率可以与实验相差仅为5%。 ,关键词:ANSYS Workbench;轴承动力学仿真;内圈、外圈和滚子故障模拟;凯斯西储大学SKF轴承;故障特征频率;实验结果;振动加速度包络。,ANSYS Workbench轴承故障动力学仿真:高精度模拟SKF轴承内外圈故障
2025-09-15 23:51:34 2.29MB
1
2.ANSYS高速建模办法 这里所说高速,我个人认为是实实在在的高速建模,这里不采用GUI,不采用APDL,而是采用第三方软件来辅助。 这里的第三方软件就是MIDAS,MIDAS建立空间模型是非常快速的,可以说相同模型,MIDAS可以比ANSYS效率高几倍,越是复杂的桥梁结构越是有它的优越性。MIDAS有一个特点,可以输出MCT文件,这个文件是ANSYS建模的基本文件。 这里要介绍一款程序:CMTA CMTA:CONVERT MIDAS MCT TO ANSYS APDL
2025-09-13 18:59:20 1.73MB ANSYS高速建模方法介绍
1
ANSYS-FLUENT-ROM-BUILDER是ANSYS公司推出的基于有限元分析的计算流体动力学(CFD)软件FLUENT的缩减模型(ROM)构建工具。ROM技术主要应用于流体动力学模拟中,能够有效地降低模型的复杂度,加快计算速度,同时保持较高的准确性。利用这种技术,工程师可以在保证结果可靠性的同时,对大规模或复杂流体系统进行快速分析和优化。 在ANSYS-FLUENT-ROM-BUILDER中,用户可以通过预处理功能对原始的计算模型进行简化处理。预处理是构建缩减模型的一个重要步骤,它包括网格划分、边界条件设定、以及物理参数的设置等。预处理的质量直接影响到缩减模型的精度和计算效率。预处理过程还包括识别模型中关键的物理特性,如流体流动、热传递等,这些都是决定预处理效果的关键因素。 缩减模型(ROM)是一种利用数学方法,如矩阵分解、主成分分析等,从高维数据中提取低维特征的技术。通过缩减模型技术,可以将原始的流体动力学问题从高维空间投影到低维空间,使得在模拟时可以忽略掉高维空间中对问题影响较小的维度,从而大大减少计算量和计算时间,而保持对主要特征的捕捉和反映。 在实际应用中,FLUENT-ROM-BUILDER能够帮助工程师处理包括但不限于以下问题:在设计初期进行快速的流体动力学评估;对复杂系统的热管理进行优化;在产品生命周期中进行多种操作条件的分析;以及对流体流动和传热过程进行多尺度模拟。这些应用可以大幅度提高工程设计和产品开发的效率,降低研发成本。 此外,Geom-1-3cell-CHT2-ST-VM.msh.gz文件是ANSYS FLUENT软件使用的网格文件,它可能包含了模型的几何信息、网格划分信息等,这些是进行流体动力学模拟的基础。由于文件名称中包含“CHT2-ST-VM”,这可能指明该文件涉及到的是热力系统的稳态模拟。而文件的“.msh.gz”后缀表明这是一个压缩的网格文件,其中“.msh”是ANSYS FLUENT软件识别的标准网格文件格式,而“.gz”表示该文件经过gzip压缩算法进行过压缩处理。 original这一关键字可能表示该压缩包内还包含了原始数据或未经过处理的文件,这些原始数据可能是用于构建缩减模型的起点,或者是经过预处理后的模型与原始模型对比的参考。 总结以上内容,ANSYS-FLUENT-ROM-BUILDER是一个强大的工具,它通过将复杂的流体动力学模型简化,不仅保持了模型的重要物理特性,而且显著降低了计算资源的需求。这对于工程设计和分析领域来说,是一个极具实用价值的技术进步。
2025-09-12 15:34:18 110.93MB
1
Ansys电磁场仿真分析教程
2025-09-07 19:57:13 7.2MB ANSYS教程
1
基于Matlab的Ansys有限元模型刚度矩阵与质量矩阵快速提取工具,基于matlab的ansys结构刚度矩阵、质量矩阵提取 【程序简介】 现成Ansys命令流+matlab程序,替建模部分命令流,直接运行matlab程序即可,具体如下: [1]利用Ansys建立有限元模型; [2]利用HBMAT命令提取结构原始刚度、质量矩阵,也可以提取结构总体刚度、质量矩阵; [3]利用matlab读取Harwell-Boeing文件格式组装结构刚度矩阵和质量矩阵,并利用质量、刚度矩阵计算结构自振频率,结果与Ansys对比一致。 [闪亮]程序已通过多个模型得到验证,无其他繁琐操作,直接运行程序即可获得结构刚度与质量矩阵,为二次开发提供。 ,基于matlab的ansys结构刚度矩阵; 质量矩阵提取; Ansys命令流; HBMAT命令; Harwell-Boeing文件格式; 结构自振频率计算; 二次开发。,基于Matlab的ANSYS结构刚度与质量矩阵提取程序
2025-08-30 09:15:04 738KB istio
1
A smart tool to translate GDSII to ANSYS HFSS 3DLayout EDB quickly. 将GDS导入到ANSYS HFSS 3DLayout的插件工具,与ANSYS AEDT集成,方便进行2.5D/3D SI Interpower Simulation。
2025-08-28 11:27:06 8.1MB ANSYS HFSS
1
ANSYS Rocky 最新版案例指导文件,共包含23个实际案例,从入门到熟练掌握。具体包括:1.Tutorial - Transfer Chute; 2.Tutorial - Static Angle of Repose Test;3.Tutorial - Vibrating Screen;4.Tutorial - SAG Mill;5.Tutorial - Drop Weight Test;6.Tutorial - High Pressure Grinding Roll;7.Tutorial - Conical Dryer;8.Tutorial - Cone Crusher;9.Tutorial - Tablet Coater;10.Tutorial - Bucket Conveyor;11.Tutorial - Discharge Air Flow;12.Tutorial - Static Structural;13.Tutorial - Windshifter;14.Tutorial - Fluidized Bed;15.Tutorial - Transient...... ### Rocky Tutorial Guide 2024知识点概览 #### 一、Rocky软件介绍与应用场景 **Rocky**是ANSYS公司开发的一款先进的离散元素方法(DEM)模拟软件,主要用于颗粒流体动力学的仿真分析。该软件通过精确模拟固体颗粒在复杂环境中的流动行为及其与流体之间的相互作用,广泛应用于矿业、化工、制药等多个领域。 #### 二、教程案例详解 本指南包含了23个精心设计的实际案例,旨在帮助用户从零基础快速成长为熟练的操作者。下面将详细介绍这些案例的主题及核心知识点: 1. **Tutorial - Transfer Chute** - **知识点**: 了解转移槽的设计原理与优化方法;掌握颗粒在转移槽内的流动特性及其对设备磨损的影响。 2. **Tutorial - Static Angle of Repose Test** - **知识点**: 学习如何进行静止状态下的安息角测试;理解不同颗粒物料的物理性质如何影响其安息角大小。 3. **Tutorial - Vibrating Screen** - **知识点**: 掌握振动筛的基本工作原理;分析振动频率与筛分效率之间的关系;学习如何通过优化参数提高筛分效果。 4. **Tutorial - SAG Mill** - **知识点**: 深入理解自磨机的工作机制;探索如何调整操作条件来提高矿石破碎效率。 5. **Tutorial - Drop Weight Test** - **知识点**: 学习重物下落测试的基本步骤;评估不同材料对冲击力的响应特性。 6. **Tutorial - High Pressure Grinding Roll** - **知识点**: 探索高压辊磨机的结构特点及其工作原理;掌握如何优化操作参数来提高研磨效率。 7. **Tutorial - Conical Dryer** - **知识点**: 了解锥形干燥器的设计原理;分析颗粒在干燥过程中的热传递与质量传递现象。 8. **Tutorial - Cone Crusher** - **知识点**: 熟悉圆锥破碎机的工作机制;掌握如何通过调整破碎腔形状和尺寸来控制破碎粒度。 9. **Tutorial - Tablet Coater** - **知识点**: 学习片剂包衣机的工作流程;掌握如何通过优化包衣液的喷洒方式来提高包衣质量。 10. **Tutorial - Bucket Conveyor** - **知识点**: 掌握斗式提升机的输送原理;分析不同物料特性和输送速度对提升效率的影响。 11. **Tutorial - Discharge Air Flow** - **知识点**: 理解排出气流的基本概念;学习如何计算气固两相流动中的阻力损失。 12. **Tutorial - Static Structural** - **知识点**: 掌握静态结构分析的基本方法;学习如何评估设备在静载荷下的强度和稳定性。 13. **Tutorial - Windshifter** - **知识点**: 了解风选机的工作原理;掌握如何通过调整风速来分离不同密度的物料。 14. **Tutorial - Fluidized Bed** - **知识点**: 探讨流化床反应器的结构特点与工作原理;学习如何优化操作条件来提高反应效率。 15. **Tutorial - Transient** - **知识点**: 掌握瞬态分析的基本概念;学习如何模拟设备在动态工况下的运行情况。 #### 三、Rocky软件功能与技术特点 - **离散元素法(DEM)**: 采用先进的DEM算法精确模拟颗粒间及颗粒与容器壁之间的接触力学。 - **多物理场耦合**: 支持流固耦合、热传导等多物理场耦合分析,实现更真实的模拟效果。 - **高性能计算(HPC)**: 具备强大的并行计算能力,支持大规模模型的高效求解。 - **可视化与后处理**: 提供直观的可视化工具,方便用户观察模拟结果;支持多种数据格式的导出,便于进一步分析。 #### 四、总结 通过上述案例的学习与实践,用户不仅能够全面掌握Rocky软件的核心功能与应用技巧,还能够在解决实际工程问题时更加得心应手。无论是对于初学者还是有一定经验的用户来说,《Rocky Tutorial Guide 2024》都是一份宝贵的参考资料。
2025-08-26 11:38:57 55.85MB ANSYS Rocky Tutorial Cases
1
ANSYS 网格划分详细介绍 ANSYS 网格划分是有限元分析中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。在 ANSYS 中,网格划分有三个步骤:定义单元属性、在几何模型上定义网格属性、划分网格。在这里,我们对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。 一、 自由网格划分 自由网格划分是自动化程度最高的网格划分技术之一,它在面上可以自动生成三角形或四边形网格,在体上自动生成四面体网格。通常情况下,可利用 ANSYS 的智能尺寸控制技术(SMARTSIZE 命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE 等系列命令)并控制疏密分布以及选择分网算法等(MOPT 命令)。对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。 同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92 号单元)。如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如 45 号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如 95 号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用 TCHG 命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。 在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由 LESIZE 命令的 LAYER1 和 LAYER2 域控制)是非常有用的。 二、 映射网格划分 映射网格划分是对规整模型的一种规整网格划分方法,其原始概念是:对于面,只能是四边形面,网格划分数需在对边上保持一致,形成的单元全部为四边形;对于体,只能是六面体,对应线和面的网格划分数保持一致;形成的单元全部为六面体。在 ANSYS 中,这些条件有了很大的放宽,包括: 1. 面可以是三角形、四边形、或其它任意多边形。对于四边以上的多边形,必须用 LCCAT 命令将某些边联成一条边,以使得对于网格划分而言,仍然是三角形或四边形;或者用 AMAP 命令定义 3 到 4 个顶点(程序自动将两个顶点之间的所有线段联成一条)来进行映射划分。 2. 面上对边的网格划分数可以不同,但有一些限制条件。 3. 面上可以形成全三角形的映射网格。 4. 体可以是四面体、五面体、六面体或其它任意多面体。对于六面以上的多面体,必须用 ACCAT 命令将某些面联成一个面,以使得对于网格划分而言,仍然是四、五或六面体。 5. 体上对应线和面的网格划分数可以不同,但有一些限制条件。 对于三维复杂几何模型而言,通常的做法是利用 ANSYS 布尔运算功能,将其切割成一系列四、五或六面体,然后对这些切割好的体进行映射网格划分。当然,这种纯粹的映射划分方式比较烦琐,需要的时间和精力较多。 面三角形映射网格划分往往可以为体的自由网格划分服务,以使体的自由网格划分满足一些特定的要求,比如:体的某个狭长面的短边方向上要求一定要有一定层数的单元、某些位置的节点必须在一条直线上、等等。这种在进行体网格划分前在其面上先划分网格的方式对很多复杂模型可以进行良好的控制,但别忘了在体网格划分完毕后清除面网格(也可用专门用于辅助网格划分的虚拟单元类型-MESH200-来划分面网格,之后不用清除)。 三、 拖拉、扫略网格划分 对于由面经过拖拉、旋转、偏移(VDRAG、VROTAT、VOFFST、VEXT 等系列命令)等方式生成的复杂三维实体而言,可先在原始面上生成壳(或 MESH200)单元形式的面网格,然后在生成体的同时自动形成三维实体网格;对于已经形成好了的三维复杂实体,如果其在某个方向上的拓扑形式始终保持一致,则可用(人工或全自动)扫略网格划分(VSWEEP 命令)功能来划分网格;这两种方式形成的单元几乎都是六面体单元。 通常,采用扫略方式形成网格是一种非常好的方式,对于复杂几何实体,经过一些简单的切分处理,就可以自动形成规整的六面体网格,它比映射网格划分方式具有更大的优势和灵活性。 四、 混合网格划分 混合网格划分即在几何模型上,根据各部位的特点,分别采用自由、映射、扫略等多种网格划分方式,以适应不同模型的需求,如在某些部位需要高精度,某些部位需要快速计算等等。混合网格划分可以满足模型的不同需求,并且可以提高计算效率和精度。 ANSYS 网格划分有多种方法,可以根据模型的特点和需求选择不同的网格划分方式,以获得较好的计算精度和效率。
2025-08-22 10:55:44 32KB ansys
1
在IT行业中,模拟和仿真软件在工程领域起着至关重要的作用,其中ANSYS和FLAC3D是两个广泛应用的工具。ANSYS是一款强大的多物理场仿真软件,它涵盖了结构、流体、热力学、电磁学等多种领域,而FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)则是一款专门用于地质力学、岩土工程和地下结构分析的有限差分软件。 标题"ansys到FLAC3D的转换器"揭示了这个压缩包文件的核心内容,即提供了一个工具或程序,使得用户能够将ANSYS中的模型数据转换为FLAC3D可以识别和处理的格式。这种转换能力对于那些需要在两种软件间切换进行不同计算或者利用各自优势的项目来说非常有价值。例如,可能在ANSYS中进行了复杂的结构分析,然后希望在FLAC3D中进行地质稳定性的评估。 描述指出,这个转换器能够实现模型从ANSYS到FLAC3D的无缝迁移,这通常涉及到几何模型、材料属性、边界条件和初始应力状态等数据的转换。这个过程可能包括解析ANSYS的输出文件,提取关键信息,再将其转化为FLAC3D的输入格式。由于FLAC3D主要关注的是三维离散连续体的动态和静态行为,因此转换器必须确保所有相关地质和力学特性得到准确地保留和映射。 "前处理"标签暗示了这个转换器可能包含预处理功能,即帮助用户准备数据以便导入FLAC3D。在使用FLAC3D时,前处理步骤包括创建网格模型、定义材料属性、设置边界条件等。通过这个转换器,用户可能能够避免重复这些工作,直接利用ANSYS已完成的模型设置。 文件名称"ANSYS_TO_FLAC3D_2010改进版"表明这是一个针对2010年版本的转换器,并且可能已经过优化和增强,以提高转换效率和兼容性。改进版通常意味着解决了早期版本存在的问题,增加了新功能,或者提升了用户体验。 这个工具为跨软件的工程模拟提供了便利,允许用户充分利用ANSYS的高级建模和分析能力,以及FLAC3D在地质工程领域的专长。这不仅节省了时间和资源,还增强了工程决策的准确性和可靠性。在实际操作中,用户应仔细阅读转换器的文档,了解其使用方法和限制,以确保正确无误地进行模型转换。同时,了解这两种软件的数据格式和接口规范也是成功转换的关键。
2025-08-17 15:17:17 279KB ansys FLAC3D
1
ANSYS APDL:变截面连续梁桥Shell63板单元建模方法及静动力特性分析命令流详解,基于ANSYS APDL的变截面连续梁桥模型快速建模与多维度分析方法:以板单元Shell63建模及静动力特性探究,ansys apdl连续梁桥模型,采用板单元shell63建模,命令流中含变截面连续梁快速建模方法,静力分析,动力特性分析。 ,ansys;apdl;连续梁桥模型;板单元shell63建模;变截面连续梁快速建模;静力分析;动力特性分析,ANSYS APDL快速建模连续梁桥,Shell63板单元静动力分析
2025-08-14 15:24:34 1.79MB
1