随着半导体制造业的快速发展,芯片表面缺陷检测技术成为了保障产品质量的关键环节。芯片表面缺陷数据集作为研究和开发缺陷检测算法的基础资源,对于促进先进检测技术的发展具有重要意义。在这一背景下,“Chip-surface-defect-dataset-数据集资源”应运而生,旨在提供一套全面且实用的数据集,供相关领域的研究者和工程师使用。 该数据集资源包含多个文件,其中readme.txt文件是整个数据集的使用说明书,详细说明了数据集的结构、内容以及如何使用数据集进行研究和开发工作。其余文件则按照不同的数据生成方式和数据类型被分类命名。例如,DatasetA-Semantic-generated和DatasetB-Semantic-generated分别代表两个不同批次或不同类型的芯片表面缺陷数据,通过语义生成的方式获得;而DatasetA-Handcrafted-generated和DatasetB-Handcrafted-generated则代表了使用手工方式标记的缺陷数据;DatasetB-Real和DatasetA-Real则包含了实际从生产线上采集到的包含缺陷的芯片表面图片。这些数据集涵盖了从实验生成到实际应用的广泛场景,为芯片缺陷检测算法的训练和测试提供了多样化、真实的训练材料。 在半导体制造过程中,芯片表面缺陷可能由多种因素引起,包括但不限于晶圆生产过程中的物理损伤、化学残留、光刻过程中的误差以及芯片封装过程中的应力问题。这些缺陷在微观尺度上可能表现为划痕、斑点、坑洞、裂纹或其他不规则形态,若不及时发现并处理,将直接影响芯片的性能和可靠性。因此,对芯片表面进行有效的检测和分类是保证最终产品质量的基础工作。 传统的芯片缺陷检测主要依靠人工目检或使用简单的机器视觉系统,但随着芯片制造技术的不断进步,芯片特征尺寸不断缩小,人工检测的效率和准确性已经无法满足生产需求,机器视觉和人工智能技术在此背景下得到了广泛应用。通过深度学习和模式识别技术,可以自动从大量芯片表面图像中提取特征,自动识别和分类各种缺陷类型,从而大幅提高检测效率和准确性。 Chip-surface-defect-dataset-数据集资源的提供,将极大地推动基于机器学习的芯片表面缺陷检测算法的研究与开发。研究人员可以利用该资源进行算法的训练、验证和测试,优化模型的性能,开发出更加高效、准确的缺陷检测系统。此外,数据集的开放性也为全球的研究者提供了一个共享的平台,有助于学术交流与合作,共同推动芯片制造技术的发展和创新。 芯片表面缺陷检测是一个集成了机械工程、电子工程、计算机科学和人工智能等多个学科的综合性技术领域。随着机器学习技术的不断进步,特别是深度学习方法在图像识别领域的突破性进展,未来芯片表面缺陷检测技术有望实现更高水平的自动化和智能化。而Chip-surface-defect-dataset-数据集资源的问世,正是这一发展进程中的重要一步,它为技术的进一步创新和应用提供了必要的数据支持。
2025-07-02 23:27:33 7.09MB Chip surface defect dataset
1
标题中的“Wafer surface defects dataset”是一个专门针对晶圆表面缺陷的数据集,这通常与半导体制造过程中的质量控制和缺陷检测密切相关。晶圆是制造集成电路(IC)的基础,其表面的任何缺陷都可能影响最终产品的性能和可靠性。在这个数据集中,我们可以预期包含了大量的图像,这些图像捕获了不同类型的缺陷,例如刮痕、颗粒等。 描述虽然简洁,但暗示了这个数据集的核心内容——它是由图像组成的,这些图像展示了晶圆表面的各种问题。这些图像可能是通过高分辨率显微镜或专门的检测设备拍摄的,用于训练机器学习模型或者进行人工分析,以识别和分类不同的缺陷类型。 标签“wafer defect scratch particle”进一步细化了数据集包含的主要缺陷类别。"wafer defect"泛指晶圆上的任何异常,而"scratch"和"particle"则具体指出了两种常见的缺陷类型。刮痕可能在晶圆处理过程中由于工具或环境因素产生,可能会影响电路的导电性。"particle"通常指的是在晶圆表面上的外来物质,如尘埃或污染物,它们可能会导致短路或其他制造问题。 在压缩包子文件的文件名称列表中,“Images”表明数据集主要由图像组成。这些图像可能按照一定的命名规则,比如包含缺陷类型、位置或其他相关信息,以方便数据分析和模型训练。每个图像可能代表一个单独的缺陷实例,或者是一组缺陷的集合,具体取决于数据集的设计。 利用这个数据集,研究者和工程师可以开发和优化算法来自动检测晶圆表面的缺陷,提高半导体制造的质量控制。这可能涉及到计算机视觉技术,包括图像预处理、特征提取、分类器设计以及深度学习模型的应用,如卷积神经网络(CNN)。同时,该数据集也可能用于评估现有检测方法的效率和准确性,推动半导体行业的技术创新。 "Wafer surface defects dataset"是一个专注于晶圆表面缺陷的图像数据集,涵盖了刮痕和颗粒两类常见缺陷。这个数据集对于改进和自动化半导体制造过程中的缺陷检测具有重要价值,也是相关领域的研究人员和工程师进行模型开发和验证的理想资源。
2025-04-02 18:06:10 592.54MB wafer defect scratch particle
1
在基于图像的轨道检测系统中,光照变化和表面反射特性容易影响轨道表面缺陷的分割效果。本文提出了一种基于背景减法的轨道表面缺陷图像分割算法。其次,为了提高精度,结合相关系数和欧几里得距离来测量像素邻域之间的相似度。然后,利用相似度测量结果确定邻域平均尺度,多尺度建立背景图像模型。最后,通过差分图像的图像差分和设定阈值实现轨道表面缺陷的分割。该方法充分利用了轨道图像中像素邻域之间的相似度信息,并建立了背景图像的精确模型。 因此,该方法可以有效减少照明不均匀的影响和轨道表面的反射特性,同时突出图像中的缺陷区域。实验结果表明,该方法具有良好的效果。对块状缺陷和线性缺陷的分割都产生了影响,这些缺陷在图像中离散分布。
2023-05-11 18:54:43 356KB Rail Surface Defect Similarity
1
资源0积分,为辅助博文上传的资源,CSDN不要给我随意涨积分!!!
2022-12-13 11:30:04 49.13MB 缺陷检测 图像处理
1
瑕疵检测代码-matlab 缺陷检测 Matlab代码用于基于Extreme Edge的缺陷检测,如以下文章所示:Zouhir Wakaf,Hamid A.Jalab(2016)。 基于缺陷区域直方图极端边缘的缺陷检测。 沙特国王大学学报-计算机与信息科学。 DOI:10.1016 / j.jksuci.2016.11.001
2022-08-31 21:16:22 1.07MB 系统开源
1
用matlab画误差椭圆代码Defect_Detection_MatLab Matlab实施的自动化缺陷检测项目 项目结构概述 该项目是用Matlab编写的,并使用Matlab r2017a版本运行。 该项目已在macOS Sierra,Windows 7,Windows 10和Ubuntu 17.10平台上进行了测试。 代码的某些部分需要支持CUDA的GPU才能正常运行。 该项目具有三种文件类型:函数,脚本和数据文件夹。 函数可以分为几类,例如数据解析器,筛选方法等。脚本可以分为几类,例如图像增强,列车级联对象检测器。 为了方便调用不同的函数,所有函数文件和脚本都直接位于同一文件夹中。 图像数据位于项目文件夹的子文件夹中。 图像数据文件夹可分为几类,例如正图像,负图像。 例如,两组正面图像分别位于文件夹“ positive”和“ aug_training_positive_images”中。 下图显示了项目结构的概述。 以下各节介绍了有关每个类别的更多详细信息。 源代码 剧本 要开始该项目,请仔细阅读所有脚本,以详细了解完整的工作流程。 这些脚本可以逐步运行,并在工作区以及命令行窗口
2022-06-16 20:46:59 5.8MB 系统开源
1
DFT的matlab源代码 surface-defect-detection 分享一些表面缺陷检测的文章,主要检测对象是:金属表面、LCD屏、建筑、输电线等缺陷或异常检物。方法以分类方法、检测方法、重构方法、生成方法为主。电子版论文放在了paper文件的对应日期文件下。 2019.01 [1]CNN做分类 论文题目:A fast and robust convolutional neural network-based defect detection model in product quality control 摘要:The fast and robust automated quality visual inspection has received increasing attention in the product quality control for production efficiency. To effectively detect defects in products, many methods focus on the handcrafted optica
2022-06-07 20:00:52 66.25MB 系统开源
1
Fabric-defect-detection Fabric defect detection based on computer vision 整体分为五个模块:1)读取图像模块;2)缺陷检测模块;3)缺陷定位模块;4)保存模块;5)退出模块 布匹缺陷检测系统框架图 布匹缺陷检测系统界面图 加载图片界面图 缺陷检测界面图 缺陷区域定位界面图 保存系统界面图 退出系统界面图
2022-01-17 21:29:17 754KB MATLAB
1
TFT-LCD_defects_detecter-Qt-opencv:基于改进的显着性模型的TFT-LCD缺陷检测器
2021-12-29 13:52:26 1.35MB opencv qt saliency-detection defect-detection
1
钢缺陷检测,分割和分类。 2021年3月28日更新: 目前正在进行中 预计完成时间:2021年3月1日
2021-11-09 15:43:16 5KB Python
1