2017-cvpr-《Interspecies Knowledge Transfer for Facial Keypoint Detection》数据集
2025-06-29 00:04:06 70B
1
从别人的java源码中提取方法视频情感检测 这项工作的目的是基于从视频中提取的人脸表情来识别六种情感(幸福,悲伤,厌恶,惊奇,恐惧和愤怒)。 为了实现这一目标,我们正在考虑不同种族,年龄和性别的人,他们每个人在表达情感时的React都非常不同。 我们收集了149个视频的数据集,其中包括来自男性和女性的简短视频,表达了之前描述的每种情感。 数据集是由学生建立的,他们每个人都录制了一个视频,该视频表达了所有的情感,完全没有方向或指示。 一些视频比其他视频包含更多的身体部位。 在其他情况下,视频在背景中的对象甚至具有不同的灯光设置。 我们希望它尽可能通用,没有任何限制,因此它可以很好地表明我们的主要目标。 代码detect_faces.py只是从视频中检测人脸,我们将该视频保存在尺寸为240x320的视频中。 使用此算法会创建不稳定的视频。 这样,我们便稳定了所有视频。 这可以通过代码完成,也可以在线免费获得稳定器。 之后,我们使用稳定的视频并将其通过代码motion_classification_videos_faces.py运行。 在代码中,我们开发了一种基于密集光流(HOF)直方图的特
2025-06-25 20:07:42 7KB 系统开源
1
《传输分集的差分检测方案》是一篇深入探讨无线通信领域的论文,主要关注的是如何通过差分检测技术提升传输分集(Transmit Diversity)系统的性能。该论文由Vahid Tarokh和Hamid Jafarkhani两位知名学者共同撰写,他们在多天线通信系统和空间分集技术方面有着深厚的理论基础和实践经验。 传输分集是一种利用多个发射天线来提高无线通信系统可靠性的技术,其核心思想是通过在不同天线上发送经过精心设计的信号,来分散无线信道中的衰落效应,从而增强接收端的信号质量。差分检测则是一种简化了的检测策略,它不依赖于信道状态信息,而是基于连续两个或多个符号之间的差异来进行信号检测,这使得系统实现起来更为简便。 论文中可能详细讨论了以下几点: 1. **差分检测原理**:阐述了差分检测的基本概念,包括如何通过比较连续符号间的相位或幅度差异来估计信号,以及这种方法如何减少对信道估计的依赖。 2. **传输分集技术**:介绍了多种传输分集技术,如空间分集、时间分集和频率分集,并讨论它们在实际系统中的应用和优缺点。 3. **性能分析**:通过数学模型和仿真结果,分析了差分检测在传输分集系统中的性能,可能包括误码率(BER)、符号错误率(SER)等关键指标,以及与非差分检测方案的比较。 4. **MATLAB仿真代码**:附带的MATLAB代码可能提供了实现论文中提到的差分检测算法的示例,用于验证理论分析和模拟实际系统行为,这对于理解算法工作原理和进行进一步研究非常有价值。 5. **优化与改进**:可能探讨了如何优化差分检测方案以适应不同信道条件,或者提出了新的改进策略以提高系统性能,例如结合其他信号处理技术。 6. **应用场景**:可能讨论了这种差分检测传输分集方案在现代通信系统,如蜂窝网络、Wi-Fi和卫星通信中的潜在应用。 Vahid Tarokh和Hamid Jafarkhani的研究对于理解和实现高效、低复杂度的无线通信系统具有重要贡献。通过阅读这篇论文及其MATLAB仿真代码,读者可以深入了解差分检测在传输分集中的作用,以及如何在实际系统中部署这种技术来提升通信质量。
2025-06-24 17:55:26 149KB Vahid
1
fall_detection 模型生成器 数据源 此模型使用MobiAct数据集的第二版 描述 [feature_extraction]:提供从MobiAct数据集中提取的特征集。 [model_selection]:将带有调整参数的RandomForestClassifier,LogisticRegression和rbf-SVC的性能进行比较。 [real_mode]:训练将要与oli App集成的模型。
2025-06-23 15:25:31 53KB JupyterNotebook
1
This is the readme for applying deep learning for joint channel estimation and detection in OFDM system. 只是其中一部分,另一部分,分开上传,因为太大le The codes have been tested on Ubuntu 16.04 + tensorflow 1.1 + Python 2.7 Dependences: 1. Tensorflow 2. Winner Channel Model Get Start: cd ./DNN_Detection python Example.py
2025-06-19 18:16:59 27KB deep learnin python ofdm
1
### Adaptive Double-Threshold Energy Detection Algorithm for Cognitive Radio #### 摘要与背景 本文提出了一种自适应双阈值能量检测算法(Adaptive Double-Threshold Energy Detection Algorithm, ADTED),该算法针对传统频谱感知算法易受噪声影响的问题进行了改进。在认知无线电系统中,次级用户(Secondary User, SU)可以通过感知频谱空洞来利用未被初级用户(Primary User, PU)使用的频段。因此,频谱感知技术是认知无线电技术的核心,对于提高网络吞吐量和灵活性至关重要。 #### 算法原理 ADTED算法基于传统的能量检测方法,但通过引入自适应双阈值机制提高了性能。该机制允许算法根据观测结果与预设阈值之间的比较,在单轮感知和双轮感知之间自动切换。具体来说: - **单轮感知**:如果观测结果低于较低的阈值,则认为频段未被占用。 - **双轮感知**:如果观测结果位于两个阈值之间,则进行第二次更长时间的感知以提高检测准确性。 - **频谱占用确认**:只有当观测结果高于较高的阈值时,才认为频段被占用。 #### 数学模型与分析 为了评估算法性能,文中推导了检测概率、虚警概率以及感知时间的数学表达式。这些表达式对于理解算法在不同信号噪声比(Signal-to-Noise Ratio, SNR)下的行为至关重要。 - **检测概率**(Probability of Detection, Pd):表示正确检测到初级用户存在的概率。 - **虚警概率**(Probability of False Alarm, Pf):表示错误地将不存在初级用户的频段识别为存在初级用户的情况。 - **感知时间**:完成一次完整感知过程所需的时间。 #### 模拟与实验验证 通过蒙特卡罗模拟方法,对ADTED算法进行了性能验证,并绘制了SNR与检测概率、SNR与感知时间之间的关系图。此外,还在基于GNU Radio和通用软件无线电外设(Universal Software Radio Peripheral, USRP)的真实认知无线电系统上进行了实验验证。实验结果表明,与现有频谱感知方法相比,ADTED算法能够在合理的时间内实现更高的检测概率。 #### 结论 本文提出的ADTED算法通过引入自适应双阈值机制显著提高了认知无线电系统中的频谱感知性能。该算法能够有效应对噪声干扰问题,并在保持合理感知时间的同时,提高了检测准确率。这对于提升认知无线电系统的整体性能具有重要意义。 #### 关键词解析 - **能量检测**(Energy Detection, ED):一种基本的频谱感知方法,通过测量接收信号的能量来判断频段是否被占用。 - **软件无线电**(Software Radio):一种可以由软件定义其功能的无线电通信系统。 - **检测概率**(Probability of Detection, Pd):衡量算法正确检测到初级用户存在的能力。 - **感知时间**(Sensing Time):完成一次频谱感知操作所需的时间长度。 ### 总结 本文详细介绍了一种适用于认知无线电的自适应双阈值能量检测算法。该算法通过对传统能量检测方法的改进,有效地解决了噪声敏感性问题,并在理论分析、模拟仿真及实际测试等多个层面上验证了其优越性。对于进一步提高认知无线电系统的频谱利用率和性能具有重要的理论意义和应用价值。
2025-06-17 20:23:54 399KB 研究论文
1
内容概要:本文主要介绍了一种针对Esri公司ArcGIS地理空间平台存在的任意文件读取漏洞,提供了详细的漏洞重现步骤和具体实例。文中通过FOFA语句进行资产定位并利用nuclei工具包制作了一个专门用于检测该漏洞的安全测试模板(nuclei poc),其中包含了完整的HTTP请求构造细节以及预期响应特征匹配规则。 适合人群:安全研究者和技术爱好者对Web应用程序特别是地理信息系统方面的渗透测试感兴趣的群体。 使用场景及目标:为研究人员提供一种有效的方法来进行针对特定版本ArcGIS服务器的渗透测试,同时帮助企业或机构检查自身的ArcGIS部署是否存在此类风险并采取措施加以修复。 阅读建议:建议读者仔细阅读文中的每一部分,尤其是涉及到具体的请求头设置和匹配条件设定的部分,在实际操作时可以根据自身环境调整某些参数如主机地址等字段。此外,还应该关注最新发布的官方补丁情况以确保系统的安全性。
2025-04-29 15:31:56 1.88MB 网络信息安全 Vulnerability Detection ArcGIS
1
本次实验是做一个基于番茄叶数据的植物病虫害AI识别项目,掌握番茄病虫害分类模型的加载、掌握番茄病虫害分类模型、进行推理预测方法握了病虫害智能检测项目的从数据采集到卷积神经网络模型构建,再到使用采集的数据对模型进行训练,最后使用模型进行实际的推理完整的开发流程。 任务1:常见数据采集方法( kaggle植物病虫害开源数据集的使用番茄病虫害分类数据标注) 任务2:导入数据集( 病虫害图片导入实验、tensorflow番茄病虫害模型训练前数据预处理) 任务3:模型选择与搭建(深度学习神经网络、keras高级API的使用、keras构建分类卷积神经网络模型) 任务4:模型训练与模型评估(基于预训练模型进行模型微调训练、tensorflow保存模型) 任务5:模型加载与预测( tensorflow评估番茄病虫害模型、使用tensorflow对番茄病虫害模型进行番茄病虫害情况预测)
2025-04-23 17:20:46 407.69MB tensorflow 人工智能 机器人技术 数据采集
1
LaneNet车道检测 使用tensorflow主要基于IEEE IV会议论文“走向端到端的车道检测:实例分割方法”,实现用于实时车道检测的深度神经网络。有关详细信息,请参阅其论文 。 该模型由编码器-解码器阶段,二进制语义分割阶段和使用判别损失函数的实例语义分割组成,用于实时车道检测任务。 主要的网络架构如下: Network Architecture 安装 该软件仅在带有GTX-1070 GPU的ubuntu 16.04(x64),python3.5,cuda-9.0,cudnn-7.0上进行了测试。 要安装此软件,您需要tensorflow 1.12.0,并且尚未测试其他版本的ten
2025-04-16 15:39:22 48.22MB deep-learning tensorflow lane-detection
1
该教程全面阐述了CCDC变化监测过程中所需用到的全部流程,冰包含了相关的下载代码,你只需要修改自己的研究区即可在谷歌地球引擎中(GEE)实现CCDC的全过程分析。 土地覆盖变化影响自然和人为环境,并被全球气候观测系统视为基本气候变量。例如,荒漠化导致从植被生态系统到沙漠的土地覆盖过渡,毁林导致森林转变为人为改造的土地利用,城市发展可以将自然环境转变为建筑物和道路覆盖的环境。为了了解这些过渡的影响,在国家至区域尺度上对其进行量化至关重要,这通过遥感分析来实现。 使用遥感数据监测土地变化需要将图像转换为关于景观变化的有用信息的方法。一个被广泛应用的方法是连续变化检测和分类(CCDC;Zhu and Woodcock 2014)。本教程将演示如何在Google Earth Engine上应用CCDC进行土地变化监测。
2024-11-20 22:50:04 904KB 课程资源 ccdc 变化检测
1