随着信息技术的快速发展,数字化阅读已经成为人们获取知识和信息的重要途径。电子图书凭借其便捷性和丰富性,在市场上广受欢迎。然而,随着市场中图书种类和数量的急剧增加,用户面临着挑选合适书籍的挑战,这导致了对个性化推荐系统的需求增加。传统的单机计算模式已无法应对大数据时代对计算能力的需求,而Hadoop这一开源分布式计算平台以其高容错性、高扩展性和对大数据处理的卓越能力,成为了应对大数据挑战的首选工具。 Hadoop、Hive、Spark等技术的引入,使得豆瓣电子图书推荐系统能够处理海量的用户数据和书籍信息,并通过复杂的算法模型为用户推荐高质量的内容。该系统能够分析用户的历史阅读行为和偏好,发现用户的阅读模式,进而推荐符合个人兴趣的书籍,极大地节省了用户筛选时间,提升了阅读效率。这种个性化推荐不仅优化了用户体验,提高了用户满意度和平台的用户黏性,还能促进优质内容的分发,增加用户流量和书籍销量,从而带动平台经济效益的增长。 在技术实现方面,本系统前台采用了Java技术进行页面设计,后台数据库则使用MySQL,这样的组合不仅保证了系统的高效运营,也提升了用户体验。管理员模块包含用户管理和豆瓣高分管理等功能,而用户个人中心则提供了修改密码、我的发布等服务。系统的建立不仅提升了用户的阅读便利性,还促进了知识分享和文化交流。 国外在个性化推荐系统研究方面起步较早,已经形成了一套成熟的理论体系和实践应用。Hadoop生态系统中的其他工具如Hive、HBase等被广泛应用于数据存储和查询,丰富了推荐系统的功能和应用范围。相比之下,国内虽然起步较晚,但发展迅速。国内研究者在借鉴国外经验的同时,结合中国特有的网络环境和用户需求,优化推荐算法,并针对中文文本的复杂性进行深入研究。 在系统研究现状方面,协同过滤算法因其简洁有效而被广泛应用。为了提高推荐的准确性和多样性,研究者还探索融合内容推荐和协同过滤的混合推荐方法。随着移动互联网的发展,移动端的图书推荐也成为了研究的热点,要求推荐系统具备高精度和实时性。 在实际应用方面,国内多家大型互联网公司已将基于Hadoop的推荐系统集成到各自的电子图书平台中,取得了显著的商业效果。版权保护、数据隐私等问题在国内的敏感性,为电子图书推荐系统的研究和应用带来挑战,但同时也推动了合规性下的数据资源充分利用的研究。 本文的组织结构主要围绕豆瓣电子图书推荐系统的开发,利用Java技术和MySQL数据库,重点介绍了管理员和用户两大模块的功能实现,以及如何通过系统实现管理工作效率的提升。整体而言,基于Hadoop的豆瓣电子图书推荐系统为电子图书市场提供了一个安全、技术强劲的系统信息管理平台,具有重要的研究价值和实际应用意义。通过需求分析和测试调整,系统与豆瓣电子图书管理的实际需求相结合,设计并实现了豆瓣电子图书推荐系统,为未来电子图书推荐系统的改进提供了理论基础和技术支持。
1
前 言 大数据学习路线 大数据技术栈思维导图 大数据常用软件安装指南 一、Hadoop 分布式文件存储系统:HDFS 分布式计算框架:MapReduce 集群资源管理器:YARN 单机伪集群环境搭建 集群环境搭建 常用 Shell 命令 Java API 的使用 基于 Zookeeper 搭建 Hadoop 高可用集群 二、Hive 简介及核心概念 Linux 环境下 Hive 的安装部署 CLI 和 Beeline 命令行的基本使用 常用 DDL 操作 分区表和分桶表 视图和索引 常用 DML 操作 数据查询详解 三、Spark Spark Core Spark SQL Spark Streaming 五、Flink 核心概念综述 开发环境搭建 Data Source Data Transformation Data Sink 窗口模型 状态管理与检查点机制 Standalone 集群部署 六、HBase 简介 系统架构及数据结构 基本环境搭建 集群环境搭建 常用 Shell 命令 Java API 过滤器详解 可显示字数有限,详细内容请看资源。
2023-12-20 09:06:41 20.75MB kafka kafka zookeeper zookeeper
1
big data hive spark
2022-08-17 14:05:37 31.58MB spark hive hdfs
1
apache-hive-3.1.3-bin.tar.gz apache-zookeeper-3.5.10-bin.tar.gz hadoop-3.3.3.tar.gz spark-3.2.1-bin-hadoop3.2.tgz mysql-8.0.29-1.el8.x86_64.rpm-bundle
2022-06-17 22:05:55 581.01MB hive spark zk
1
lg大数据高薪训练营 HBase、 Java9 、Java10 、MySQL优化 、JVM原理 、JUC多线程、 CDH版Hadoop Impala、 Flume 、Sqoop、 Azkaban、 Oozie、 HUE、 Kettle、 Kylin 、Spark 、Mllib机器学习、 Flink、 Python、 SpringBoot、 Hadoop3.x新特性、 ClickHouse、 Kudu、 Presto 、Druid、 Ambari 、DataX、 Logstash 、Kibanna、 数据结构 Scala · Scala基础入门 · 函数式编程 · 数据结构 · 面向对象编程 · 模式匹配 · 高阶函数 · 特质 · 注解&类型参数 · 隐式转换 · 高级类型 · 案例实操 Spark Core · 安装部署 · RDD概述 · 编程模型 · 持久化&检查点机制 · DAG · 算子详解 · RDD编程进阶 · 累加器&广播变量 Spark SQL · SparkSQL · DataFrame · DataSet · 自定义
2022-06-08 19:10:43 161B 大数据
1
spark-3.2.0-bin-hadoop3-without-hive
2022-06-06 13:22:41 173.18MB hive spark hadoop 数据仓库
1
CDH6针对hive on spark的调优文档,这个是生产的实战经验
2022-05-25 14:07:36 539KB hive spark 文档资料 hadoop
1
使用hive3.1.2和spark3.0.0配置hive on spark的时候,发现官方下载的hive3.1.2和spark3.0.0不兼容,hive3.1.2对应的版本是spark2.3.0,而spark3.0.0对应的hadoop版本是hadoop2.6或hadoop2.7。 所以,如果想要使用高版本的hive和hadoop,我们要重新编译hive,兼容spark3.0.0。除了兼容spark3.0.0外,还将hive3.1.2的guava的版本进行了提升,和hadoop3.x保持一致,以便兼容hadoop3.1.3。
2022-05-20 14:06:07 268.02MB 源码软件 hive spark hadoop
1
hadoop、hive、spark
2022-04-19 18:09:57 1.78MB hive hadoop spark linux
1
删除了删除了删除了删除了删除了删除了删除了删除了删除了删除了
2022-04-04 18:36:20 116B hadoop hive spark 大数据
1