基于Fpga的hbm2系统设计: 实现对hbm2 ip核的读写访问接口时序控制。 HBM 器件可提供高达 820GB s 的吞吐量性能和 32GB 的 HBM 容量,与 DDR5 实现方案相比,存储器带宽提高了 8 倍、功耗降低了 63%。 本工程提供了对hbm2 ip核的读写控制,方便开发人员、学习人员快速了解hbm2使用方法和架构设计。 工程通过vivado实现 FPGA技术近年来在电子设计领域扮演着越来越重要的角色,尤其是在高性能计算和实时系统设计中。HBM2(High Bandwidth Memory Gen2)作为一种先进存储技术,具有高带宽、低功耗的特点。本工程项目针对FPGA平台,成功实现了对HBM2 IP核的读写访问接口的时序控制,这不仅标志着对传统存储技术的巨大突破,而且为数据密集型应用提供了新的解决方案。 HBM2的引入,使存储器的带宽得到显著提升,达到了820GB/s的恐怖吞吐量,同时其容量也达到了32GB。相比于传统的DDR5存储技术,HBM2实现了存储器带宽的8倍提升和功耗的63%降低。这种性能的飞跃,为需要高速数据处理能力的应用场景带来了革命性的改变。例如,数据中心、人工智能、机器学习等对数据访问速度有极高要求的领域,都将从HBM2带来的高性能中受益。 本工程设计的核心在于为开发者和学习者提供一个方便的HBM2使用和架构设计的参考。通过该项目,用户能够迅速掌握HBM2的基本操作和深层次的架构理解。在实际应用中,用户可以通过本项目提供的接口和时序控制,实现高效的数据存取,从而优化整体系统的性能。 项目实施采用了Xilinx公司的Vivado设计套件,这是一款集成了HDL代码生成、系统级仿真和硬件调试的综合性工具,能够有效支持FPGA和SoC设计。Vivado为本项目的设计提供了有力的支撑,使得开发者能够更加高效地完成复杂的HBM2 IP核集成。 在文件中提供的资料,诸如“基于的系统设计是一种新的高带宽内存技术与传统相.doc”和“基于的系统设计实现对核的读写访问接口时序.html”等,虽然文件名不完整,但可推测其内容涉及对HBM2技术与传统内存技术的对比分析,以及对HBM2 IP核读写访问接口时序控制的深入探讨。这些文档对理解HBM2技术的原理和应用具有重要意义。 此外,图片文件“1.jpg”和“2.jpg”可能是系统设计的示意图或HBM2芯片的照片,用以直观展示技术细节或项目成果。而文档“基于的系统设计深入解析读写访问接口时序控.txt”、“基于的系统设计探讨读写访问接口时序控制随着.txt”等,可能包含对HBM2系统设计中关键问题的分析与讨论,如时序控制策略、接口设计原则和性能优化方法等。 项目中还包含了对HBM2系统设计的总结性文档,如“基于的系统设计摘要本文介绍了基于的系统设计.txt”和“基于的系统设计实现对核的.txt”。这些文档可能概括了整个项目的架构、设计目标、实现方法以及最终的测试结果,为项目的评估和进一步发展提供依据。 在项目实施过程中,对HBM2 IP核的读写控制是关键,它确保了数据可以正确、及时地在系统和存储器之间传输。为了实现这一点,设计团队可能需要对FPGA的内部资源进行精细配置,包括时钟管理、数据缓冲、接口协议转换等,确保在不牺牲稳定性的情况下实现高速数据传输。 该FPGA基于HBM2系统设计项目,在高带宽和低功耗方面带来了显著的性能提升,并通过提供成熟的读写接口时序控制解决方案,极大地降低了系统设计的复杂性,使得开发者能够更加专注于业务逻辑的实现。通过本项目的设计理念和方法,可以预见,未来在需要高速数据处理的领域,如数据中心、高性能计算、人工智能等领域,将得到更广泛的应用。
2025-07-30 22:25:16 1.22MB scss
1
2、利用FPGA的FIR滤波器IP核设计滤波器。 我们的低通滤波器使用的是cycloneⅡ代的FPGA,只能使用quartus13.0。 打开Quartus13.0,新建工程,后找到IP Catalog里面的FIR II,之后双击即可进入IP核设置页面并填写ip的名称.2、利用FPGA的FIR滤波器IP核设计滤波器。 我们的低通滤波器使用的是cycloneⅡ代的FPGA,只能使用quartus13.0。 打开Quartus13.0,新建工程,后找到IP Catalog里面的FIR II,之后双击即可进入IP核设置页面并填写ip的名称.
2025-07-22 14:59:32 5.99MB 网络协议
1
内容概要:本文详细介绍了如何在Xilinx FPGA中使用CAN IP核实现CAN总线通信。首先,作者分享了硬件配置的关键步骤,包括选择合适的IP核、配置时钟域以及寄存器映射。接着展示了核心Verilog代码片段,涵盖寄存器配置、数据发送与接收、硬件过滤器配置及时序约束等方面。文中特别强调了常见的调试技巧和注意事项,如时钟分频、波特率计算、终端电阻连接、CRC校验等问题。此外,还提供了完整的工程文件下载链接,便于读者快速上手实践。 适合人群:熟悉FPGA开发并希望深入了解CAN总线通信的工程师和技术爱好者。 使用场景及目标:适用于需要在FPGA平台上集成CAN总线通信功能的项目,帮助开发者掌握从硬件配置到软件调试的全流程,确保通信系统的稳定性与可靠性。 其他说明:本文不仅提供理论指导,还附有大量实际案例和代码示例,有助于读者更好地理解和应用相关技术。
2025-07-21 10:46:20 273KB
1
根据提供的文件信息,SRIO IP核说明文档介绍了Serial RapidIO Gen2 Endpoint的IP核,版本号为v4.1。该IP核是由Xilinx提供的,在Vivado设计套件中使用。在详细解释这个IP核之前,我们需要了解一些背景知识: **背景知识:** Serial RapidIO是一种高性能、低延迟的串行互连标准,用于芯片、板卡或机箱内部的处理器、FPGA、ASIC等元件之间的通信。Serial RapidIO分为多个版本,本IP核文档中所涉及的是Gen2版本,即第二代Serial RapidIO标准。 **SRIO IP核内容:** - **系统概述:**SRIO IP核提供了一个灵活且优化的Serial RapidIO Gen2的物理层、逻辑层以及传输层解决方案。它支持1x、2x和4x通道宽度,并包含可配置的缓冲区设计、参考时钟模块、复位模块以及配置的参考设计。该核心使用AXI4-Stream接口来实现高吞吐量数据传输,并使用AXI4-Lite接口进行配置(维护)。 - **标准合规性:**文档中的产品规范部分将详细说明IP核符合Serial RapidIO Gen2标准的哪些方面。 - **性能与资源利用:**性能部分将说明IP核的性能指标,例如处理速率等;资源利用部分将描述使用该IP核在FPGA上会占用多少资源,包括逻辑单元、存储资源等。 - **串行收发器支持:**将说明该IP核支持的串行收发器类型和配置。 - **顶层封装:**描述顶层封装的特征及其端口描述。 - **寄存器空间:**文档将详细说明IP核中使用的寄存器配置。 - **设计指导:**包括通用设计指南、时钟设计、复位设计等。 - **设计流程:**描述定制和生成核心、约束核心、仿真、综合与实现的设计步骤。 - **示例设计:**提供了一个详细的示例设计,包括生成核心、目录和文件内容、实现示例设计、仿真示例设计等。 - **测试台架演示:**展示了如何使用测试台架进行验证。 - **附加资源和法律声明:**包括Xilinx资源、参考文献、修订历史以及重要的法律声明。 **SRIO IP核特点:** - **高性能物理层和逻辑层:**该IP核利用了优化的技术,以提供高速的数据传输能力。 - **AXI4接口支持:**通过AXI4-Stream和AXI4-Lite接口,IP核能够实现高效的数据流处理和简单灵活的配置。 - **可配置的缓冲区设计:**通过不同的缓冲区配置,设计者可以优化数据传输的性能。 - **参考时钟和复位模块:**提供参考时钟模块和复位模块以确保稳定可靠的时钟信号和复位机制。 - **多种通道宽度支持:**能够支持1x、2x、4x通道宽度,为不同的应用提供了灵活的选择。 - **设计与实现指导:**通过详细的文档和示例,指导设计者如何使用该IP核进行设计和实现。 - **迁移和升级支持:**提供指导来帮助设计者迁移到Vivado设计套件以及在Vivado套件内进行升级。 - **调试工具和方法:**介绍了如何使用Xilinx提供的调试工具和方法进行问题排查和分析。 **注意事项:** 1. SRIO IP核需要在Xilinx的Vivado设计套件环境中使用。 2. 文档中可能会有一些OCR扫描引起的文字错误,需要理解上下文来确保内容的准确性。 3. 在实际应用IP核之前,设计者需要仔细阅读并遵循文档中的指导,以确保设计符合Serial RapidIO Gen2标准,并且在硬件上能正确实现。 4. 需要注意文档中的“不支持特性”部分,以免在设计中使用到未被支持的功能,导致设计失败。 通过这份SRIO IP核的文档,设计者可以获得足够的信息和指导来在FPGA设计中实现Serial RapidIO Gen2协议,满足高速数据传输的需求。
2025-07-14 16:12:14 4.15MB SRIO PG007 Vivado Rapidio
1
8051微控制器是MCS-51系列的成员,最初由英特尔于1980年代设计。 8051自推出以来已大受欢迎,估计它在所有嵌入式系统产品中占很大比例.8051核心的基本形式包括几个片上外设,如定时器和计数器,另外还有128字节的片上 数据存储器和高达4K字节的片上程序存储器。
2025-07-11 16:38:45 1.41MB
1
比较和分析了LEON2,OpenRISC1200,NiosII 等3 种开放性RISC 处理器IP 核的结构特点, 然后分以三种处理器为核心在FPGA 平台上构建了一个评测系统, 采用Dhrystone 2.1 基准测试程序评测了它们的性能最后在0.18um 的CMOS工艺下进行了综合, 给出了它们在ASIC 平台下面积和频率的比较。 开放性32位RISC处理器IP核在当前的SoC(System on Chip)设计中扮演着至关重要的角色,尤其在嵌入式系统和高性能计算领域。本文主要对比和分析了三种开源的32位RISC处理器IP核:LEON2、OpenRISC1200和NiosII。 LEON2处理器由Gaisler Research公司开发,最初源于欧洲航天局的项目,设计目标是摆脱对美国处理器的依赖。LEON2基于SPARCV8指令集架构,具备5级流水线设计,支持数据Cache和指令Cache分离,并且可选配16x16 MAC单元以增强数字信号处理能力。它还提供了浮点运算单元和协处理器接口,便于扩展。LEON2采用AMBA2.0总线标准,便于与其他系统组件集成,同时具备调试支持单元和调试串口,以方便开发和调试。其可配置性是其一大亮点,用户可以通过图形化界面定制Cache大小、是否支持硬件乘除法等功能。 OpenRISC1200是OpenCores组织发布的32位RISC处理器,是OpenRISC1000系列的一部分。它也是一个开放源代码项目,旨在提供一个简单、高效且低成本的处理器核心。OpenRISC1200的结构相对简洁,适合那些对成本和功耗敏感的嵌入式应用。它同样支持C/C++的开发环境,但可能不如LEON2那样具备丰富的外设接口和扩展功能。 NiosII则是Altera公司提供的RISC处理器IP核,作为其FPGA解决方案的一部分。NiosII处理器家族包含快速、经济和平衡三种变体,以满足不同性能和资源需求。它支持多种软件开发工具,如嵌入式软件开发套件(EDK),并可以方便地与Altera的FPGA器件和其他硬件组件集成,提供灵活的软硬件协同设计能力。 通过对这三种处理器的比较,可以发现它们各有特色。LEON2以其高性能和高度可配置性受到青睐,OpenRISC1200则以开源和低成本吸引关注,而NiosII凭借其与Altera FPGA平台的紧密集成和丰富的开发工具赢得用户。在实际应用中,选择哪种处理器主要取决于具体项目的需求,如性能、成本、可配置性、开发工具和生态系统支持等因素。 Dhrystone 2.1基准测试程序被用来评估这些处理器的性能,这是一种常用的衡量CPU性能的工具,通过执行一系列的计算密集型任务来估计处理器的运行速度。通过在FPGA和ASIC平台上进行测试,可以获取到处理器在实际应用中的性能表现和面积、频率指标,为设计决策提供依据。 开放源代码的32位RISC处理器IP核为SoC设计提供了多样化的选择。开发者可以根据项目需求,结合处理器的性能、可配置性、成本和生态系统支持等因素,选择最适合的处理器IP核。随着技术的不断进步,这类处理器的核心性能和可定制性将进一步增强,对于推动SoC设计的发展和创新有着积极的促进作用。
1
USB 2.0(Universal Serial Bus 2.0)是一种高速接口标准,广泛应用于各种电子设备,如计算机、手机、打印机、摄像头等。IP核(Intellectual Property Core)是集成电路设计中的关键组件,它代表了特定功能的硬件设计,可以被其他系统设计者重复使用。在本主题中,“USB 2.0 IP核”指的是专门实现USB 2.0规范的可重用硬件模块。 USB 2.0标准于2000年发布,相比于之前的USB 1.1,它提供了显著的速度提升,最高传输速率可达480 Mbps(即60 MB/s),被称为“High Speed”模式。这个速度的提升使得USB 2.0成为传输大量数据的理想选择,例如高清视频、大容量存储设备等。 USB 2.0 IP核通常包含以下主要部分: 1. **主机控制器(Host Controller)**:这是USB系统的中心,负责管理USB设备的连接、分配带宽、发送和接收数据。它包含了事务传输器、端点管理器和总线电源管理器等子模块。 2. **设备控制器(Device Controller)**:位于USB设备内部,处理与主机之间的通信。它包括收发器、状态机、端点缓冲区等。 3. **物理层(PHY)**:负责将USB 2.0的数据信号转换为适合传输的模拟信号,同时接收并转换回数字信号。它还包含了数据编码和时钟恢复机制。 4. **USB协议栈**:是软件层的一部分,负责解析USB协议,包括枚举过程(device discovery)、配置选择、数据传输和错误处理等。 5. **端点(Endpoint)**:是设备上数据交换的逻辑单元,每个端点都有自己的缓冲区和传输特性。USB 2.0支持四种类型的端点:控制端点(Control)、批量端点(Bulk)、中断端点(Interrupt)和同步端点(Isochronous)。 USB 2.0 IP核的设计和实现需要遵循USB规范,确保兼容性和可靠性。在实际应用中,设计者可以根据需求选择集成USB 2.0 IP核,以快速构建符合USB 2.0标准的系统。相关文档通常会涵盖以下内容: - **接口定义**:详细描述了IP核与其他模块的连接方式,包括引脚定义、时序要求等。 - **配置选项**:可能包含多种工作模式、电源管理设置等,以适应不同的应用场景。 - **软件支持**:提供驱动程序开发指南,以便在操作系统上实现USB设备的驱动程序。 - **设计实例**:展示如何将IP核集成到FPGA或ASIC设计中,并进行验证。 - **故障排查**:提供常见问题及解决方案,帮助开发者解决在设计和调试过程中遇到的问题。 USB 2.0 IP核是实现高速USB通信的关键组件,它涵盖了从物理层到协议层的完整功能。通过理解其内部结构和工作原理,以及参考提供的文档,设计者可以高效地将USB 2.0功能集成到自己的系统中。
2025-06-27 10:19:42 656KB usb2.0
1
摘 要  介绍一款开源的、符合SPARCV8规范的、采用RISC结构的32位处理器IP按——Leon2,它可以从互联网上免费下载使用。Leon2是以VHDL形式存在的软核、完全可综合、内部硬件资源可裁剪、主要面向嵌入式应用系统、可以用FPGA/CPLD和ASIC等技术实现。文中介绍Leon2的结构、技术特点、软硬件的开发过程和一些应用实例。关键词 Leon2 SPARC V8 AMBA VHDL 交叉编译器引 言    Leon2是GaislerResearch公司于2003年研制完成的一款32位、符合IEEE-1754(SPARCVS)结构的处理器IP核。它的前身是欧空局研制的Leon以及E
2025-06-27 10:16:06 136KB 通信与网络
1
Vivado FFT IP 核中文翻译版本知识点 一、FFT 算法简介 Fast Fourier Transform(FFT)是一种快速傅里叶变换算法,用于将时域信号转换为频域信号。FFT 算法广泛应用于信号处理、图像处理、通信等领域。 二、Vivado FFT IP 核简介 Vivado FFT IP 核是 Xilinx 公司提供的一款 FFT IP 核,用于实现快速傅里叶变换算法。该 IP 核支持多种配置和自定义选项,能够满足不同的应用需求。 三、LogiCORE IP 产品指南 LogiCORE IP 产品指南是 Xilinx 公司提供的一份文档,用于指导用户使用 LogiCORE IP 核。该文档涵盖了 LogiCORE IP 核的设计、实现、测试、验证等方面的内容。 四、Vivado 设计套件 Vivado 设计套件是 Xilinx 公司提供的一款集成开发环境(IDE),用于设计、实现、测试和验证数字电路。Vivado 设计套件支持多种编程语言,包括 C、C++、SystemVerilog 等。 五、DSP 图形用户界面 DSP 图形用户界面是 Vivado 设计套件中的一个组件,用于设计和实现数字信号处理(DSP)系统。该组件提供了一个图形化的界面,用户可以通过拖拽和点击的方式设计 DSP 系统。 六、制约核心 制约核心是 Vivado FFT IP 核的一个重要组件,用于实现快速傅里叶变换算法。该组件能够根据用户的需求进行配置和自定义。 七、模拟和实现 模拟和实现是 Vivado 设计套件中的两个重要步骤。在模拟阶段,用户可以使用 Vivado 设计套件来设计和实现 DSP 系统。在实现阶段,用户可以使用 Vivado 设计套件来生成 FPGA 配置文件。 八、事件信号 事件信号是 Vivado FFT IP 核的一个重要概念,用于描述信号的变化和传输。事件信号广泛应用于信号处理、通信等领域。 九、AXI4-Stream 接口 AXI4-Stream 接口是一种高带宽、低延迟的接口协议,用于实现数据传输和处理。Vivado FFT IP 核支持 AXI4-Stream 接口,能够满足高性能和低延迟的应用需求。 十、理论操作 理论操作是 Vivado FFT IP 核的一个重要概念,用于描述快速傅里叶变换算法的数学基础。了解理论操作能够帮助用户更好地理解和使用 Vivado FFT IP 核。 十一、产品规格和资源利用率 产品规格和资源利用率是 Vivado FFT IP 核的一个重要概念,用于描述 IP 核的性能和资源占用。了解产品规格和资源利用率能够帮助用户更好地选择和使用 Vivado FFT IP 核。 十二、设计流程步骤 设计流程步骤是 Vivado 设计套件中的一个重要概念,用于指导用户设计和实现 DSP 系统。该步骤包括需求分析、系统设计、实现、测试和验证等阶段。 十三、核心设计特征 核心设计特征是 Vivado FFT IP 核的一个重要概念,用于描述 IP 核的设计和实现特征。了解核心设计特征能够帮助用户更好地理解和使用 Vivado FFT IP 核。 十四、拆包和模型内容 拆包和模型内容是 Vivado 设计套件中的一个重要概念,用于描述 DSP 系统的设计和实现。了解拆包和模型内容能够帮助用户更好地设计和实现 DSP 系统。 十五、安装和软件要求 安装和软件要求是 Vivado 设计套件中的一个重要概念,用于指导用户安装和配置 Vivado 设计套件。了解安装和软件要求能够帮助用户更好地使用 Vivado 设计套件。 十六、FFT C 模型接口 FFT C 模型接口是 Vivado FFT IP 核的一个重要概念,用于描述快速傅里叶变换算法的 C 语言接口。了解 FFT C 模型接口能够帮助用户更好地使用 Vivado FFT IP 核。 十七、C 模型示例代码 C 模型示例代码是 Vivado FFT IP 核的一个重要概念,用于提供快速傅里叶变换算法的 C 语言示例代码。了解 C 模型示例代码能够帮助用户更好地使用 Vivado FFT IP 核。 十八、与 FFT 编译 C 模型 与 FFT 编译 C 模型是 Vivado FFT IP 核的一个重要概念,用于描述快速傅里叶变换算法的编译过程。了解与 FFT 编译 C 模型能够帮助用户更好地使用 Vivado FFT IP 核。 十九、FFT MATLAB 软件墨西哥人函数 FFT MATLAB 软件墨西哥人函数是 Vivado FFT IP 核的一个重要概念,用于描述快速傅里叶变换算法的 MATLAB 软件实现。了解 FFT MATLAB 软件墨西哥人函数能够帮助用户更好地使用 Vivado FFT IP 核。 二十、调试工具 调试工具是 Vivado 设计套件中的一个重要概念,用于指导用户调试和验证 DSP 系统。了解调试工具能够帮助用户更好地调试和验证 DSP 系统。 二十一、模拟调试 模拟调试是 Vivado 设计套件中的一个重要概念,用于指导用户模拟和调试 DSP 系统。了解模拟调试能够帮助用户更好地模拟和调试 DSP 系统。 二十二、AXI4-Stream 接口调试 AXI4-Stream 接口调试是 Vivado FFT IP 核的一个重要概念,用于指导用户调试和验证 AXI4-Stream 接口。了解 AXI4-Stream 接口调试能够帮助用户更好地使用 Vivado FFT IP 核。 二十三、Xilinx 资源 Xilinx 资源是 Vivado 设计套件中的一个重要概念,用于提供 Xilinx 公司的相关资源和文档。了解 Xilinx 资源能够帮助用户更好地使用 Vivado 设计套件和 Vivado FFT IP 核。
2025-06-26 17:02:24 1.37MB
1
### 7 Series FPGAs Integrated Block for PCI Express IP核中基于64位事务层接口的AXI4-Stream接口设计 #### 概述 本文旨在深入解析7 Series FPGAs集成块中的PCI Express (PCIe) IP核所采用的64位事务层接口的AXI4-Stream接口设计。该设计主要用于实现高速数据传输,特别是针对大数据量的传输场景。AXI4-Stream接口设计主要包括信号定义、数据传输规则及接口行为等内容。 #### 一、TLP格式 **事务层数据包**(Transaction Layer Packet, TLP)是PCI Express协议中用于在事务层上传输数据的基本单元,它由多个部分组成: - **TLP头**:包含关于TLP的重要信息,如总线事务类型、路由信息等。 - **数据有效负载**:可选的,长度可变,用于传输实际的数据。 - **TLP摘要**:可选的,用于提供数据的完整性检查。 数据在AXI4-Stream接口上以**Big-Endian**顺序进行传输和接收,这是遵循PCI Express基本规范的要求。Big-Endian是指数据表示方式中高位字节存储在内存的低地址处,低位字节存储在内存的高地址处。 #### 二、基于64位事务层接口的AXI4-Stream接口设计 1. **数据传输格式**:当使用AXI4-Stream接口传输TLP时,数据包会在整个64位数据路径上进行排列。每个字节的位置根据Big-Endian顺序确定。例如,数据包的第一个字节出现在s_axis_tx_tdata[31:24](发送)或m_axis_rx_tdata[31:24](接收)上,第二个字节出现在s_axis_tx_tdata[23:16]或m_axis_rx_tdata[23:16]上,以此类推。 2. **数据有效性**:用户应用程序负责确保其数据包的有效性。IP核不会检查数据包是否正确形成,因此用户需自行验证数据包的正确性,以避免传输格式错误的TLP。 3. **内核自动传输的数据包类型**: - 对远程设备的配置空间请求的完成响应。 - 对内核无法识别或格式错误的入站请求的错误消息响应。 4. **用户应用程序负责构建的数据包类型**: - 对远程设备的内存、原子操作和I/O请求。 - 对用户应用程序的请求的完成响应,例如内存读取请求。 5. **配置空间请求处理**:当配置为端点时,IP核通过断言tx_cfg_req(1位)通知用户应用程序有待处理的内部生成的TLP需要传输。用户应用程序可以通过断言tx_cfg_gnt(1位)来优先处理IP核生成的TLP,而不考虑tx_cfg_req的状态。这样做会阻止在用户交易未完成时传输用户应用程序生成的TLP。 6. **优先级控制**:另一种方法是,用户应用程序可以在用户交易完成之前通过反断言tx_cfg_gnt(0位)来为生成的TLP保留优先级,超过核心生成的TLPs。用户交易完成后,用户应用程序可以断言tx_cfg_gnt(1位)至少一个时钟周期,以允许待处理的核心生成的TLP进行传输。 7. **Base/Limit寄存器处理**:IP核不会对Base/Limit寄存器进行任何过滤,确定是否需要过滤的责任在于用户。这些寄存器可以通过配置接口从Type 1配置头空间中读取。 8. **发送TLP**:为了发送一个TLP,用户应用必须在传输事务接口上执行以下事件序列: - 用户应用逻辑断言s_axis_tx_tvalid信号,并在s_axis_tx_tdata[63:0]上提供TLP的第一个QWORD(64位)。 - 如果IP核正在断言s_axis_tx_tready信号,则这个QWORD会立即被接受;否则,用户应用必须保持呈现这个QWORD,直到IP核准备好接收为止。 通过上述详细的介绍可以看出,基于64位事务层接口的AXI4-Stream接口设计为PCI Express IP核提供了高效的数据传输机制,尤其是在处理大数据量传输时具有显著优势。用户应用程序需要遵循特定的指导原则,以确保与PCI Express集成块的有效交互,并管理出站数据包的传输,同时处理与配置空间相关的请求。
2025-06-19 11:52:40 1.13MB 网络协议
1