项目细节: 首先载入源图像,并进行尺寸预处理。 载入源图像image并作拷贝为org,将image按原始h,w的比例大小设置为高度为500的图像。 进行边缘检测和轮廓检测 在灰度化->边缘检测->轮廓检测后,将轮廓按轮廓的面积进行排序(注意这里默认是顺序的即从小到大,我们需要从大到小排序,所以reverse = True),取面积最大的前5个轮廓,并用多边形逼近(cv.approxPolyDP)的方法将轮廓近似出来,因为检测的轮廓有圆形有长矩形,我们需要的检测的目标轮廓是四边形(类似于矩形)。所以我们经过筛选得到我们需要的四边形的坐标。 坐标的透视变换 由多边形逼近轮廓的方法得到的坐标 是每个轮廓逆时钟方向的各个顶点的坐标,而我们想要顺时针方向的各个顶点的坐标,所以需要先对轮廓坐标重新排序。接着需要求出四边形轮廓的高和宽,来创建一个dst数组:该数组为[[0,0],[width-1,0],[width-1,height-1],[0,height-1] 。将四边形轮廓坐标和dst输入到cv.getPerspectiveTransform 函数里,得到透视变换的M矩阵。接着将用M矩阵对原图像做透视变化,其中得出的warped的大小为(width,height),这样透视变换就做完了。 简单点说:首先读取两个坐标数组,计算变换矩阵;然后根据变换矩阵对原图进行透视变换,并输出到目标画布, OCR识别 在OCR识别之前要对待识别的图像进行预处理,即灰度二值化,接着利用ocr指令来识别。 源码: import cv2 as cv import numpy as np import pytesseract def order_point(pts): rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts,axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transfer(image,pts): rect = order_point(pts) (tl,tr,br,bl) = rect width1 = np.sqrt((tr[0]-tl[0])*(tr[0]-tl[0])+(tr[1]-tl[1])*(tr[1]-tl[1])) width2 = np.sqrt((br[0]-bl[0])*(br[0]-bl[0])+(br[1]-bl[1])*(br[1]-bl[1])) width = max(width1,width2) #python中有max函数和np.max函数,前者是比较两个数值的大小取最大值,后者是取出数组的最大值 height1 = np.sqrt((tr[0]-br[0])*(tr[0]-br[0])+(tr[1]-br[1])*(tr[1]-br[1])) height2 = np.sqrt((tl[0]-bl[0])*(tl[0]-bl[0])+(tl[1]-bl[1])*(tl[1]-bl[1])) height = max(height1,height2) dst = np.array([[0,0],[width-1,0],[width-1,height-1],[0,height-1]],dtype="float32") M = cv.getPerspectiveTransform(rect,dst) warped =cv.warpPerspective(image,M,(width,height)) return warped def resize(image,height=None): if height is None: return image else : h,w= image.shape[:2] #shape:h,w,channel image[h(row),w(col),channel] r = height/h width = int(w*r) #关于size函数参数的一般是(宽,高) image = cv.resize(image,(width,height),interpolation=cv.INTER_AREA) #还有resize(img,(宽,高)),即先列后行 return image #利用cv.bounding()得到x,y,width,height #其它情况一般都是先行后列(高,宽) #如shape得到参数,或者roi区域内部参数,建立新的Mat 都是先行后列 image = cv.imread("E:\opencv\picture\page.jpg") orig = image.copy() image = resize(image,height=500) ratio = orig.shape[0]/500 #边缘检测 image_gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) image_gray = cv.GaussianBlur(image_gray,(5,5),0) image_edge = cv.Canny(image_gray,75,200) #轮廓检测 image_contours = cv.findContours(image_edge.copy(),cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)[1] countours = sorted(image_contours,key=cv.contourArea,reverse=True)[:5] for c in countours: arc = cv.arcLength(c,closed=True) approx = cv.approxPolyDP(c,arc*0.02,True) if len(approx) == 4: screen_shot = approx break cv.drawContours(image,[screen_shot],-1,(0,0,255),2) warped =four_point_transfer(orig,screen_shot.reshape(4,2)*ratio) cv.imshow('warped_window',resize(warped,height=650)) warped =cv.cvtColor(warped,cv.COLOR_BGR2GRAY) scan = cv.threshold(warped,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)[1] cv.imwrite("E:/opencv/picture/scan.png",scan) cv.imshow("scan ",scan) scanstring = pytesseract.image_to_string(scan) print(scanstring) cv.waitKey(0) cv.destroyAllWindows() 在这个图像处理案例中,主要涉及了以下几个关键技术点: 1. 图像预处理: - **图像尺寸预处理**:通过`resize`函数调整图像尺寸,确保图像高度为500像素,保持原图像的宽高比例。这一步骤是为了统一处理不同大小的图像,使其适应后续的处理算法。 - **灰度化**:使用`cv.cvtColor`函数将彩色图像转换为灰度图像,简化图像特征,便于边缘检测和轮廓识别。 - **边缘检测**:采用Canny算法`cv.Canny`进行边缘检测,识别图像中的边界,帮助分离文字区域。 2. 轮廓检测与筛选: - **轮廓检测**:使用`cv.findContours`找出图像中的所有轮廓,`cv.RETR_LIST`确保获取所有独立的轮廓,`cv.CHAIN_APPROX_SIMPLE`压缩轮廓信息以节省内存。 - **轮廓排序与筛选**:按照轮廓面积进行降序排序,选择前五个最大的轮廓,这是因为文字区域通常比背景区域的面积更大。通过`cv.approxPolyDP`进行多边形逼近,去除非四边形轮廓,保留类似矩形的四边形轮廓,以精确选取文本区域。 3. 坐标变换与透视变换: - **坐标排序**:将轮廓坐标按照顺时针方向重新排序,这是为了满足`cv.getPerspectiveTransform`函数的需要,它需要按顺序的顶点坐标。 - **创建dst数组**:dst数组定义了目标四边形的四个顶点,即一个标准的矩形。 - **计算透视变换矩阵**:利用`cv.getPerspectiveTransform`得到将四边形轮廓坐标转换为dst矩形的透视变换矩阵`M`。 - **执行透视变换**:通过`cv.warpPerspective`函数,应用M矩阵对原图像进行透视变换,生成warped图像,使文字区域变为标准矩形。 4. OCR识别: - **预处理**:将warped图像转为灰度图像并进行二值化,使用`cv.threshold`和`cv.THRESH_BINARY|cv.THRESH_OTSU`进行自动阈值设定,提高文字识别的准确性。 - **OCR识别**:使用`pytesseract.image_to_string`对二值化后的图像进行文字识别,将图像转换为可读的文本字符串。 总结来说,这个案例展示了如何通过OpenCV库进行图像处理,包括尺寸调整、边缘检测、轮廓识别、坐标变换以及最终的OCR文字识别。这些步骤是图像分析和自动化文本提取的关键技术,常用于文档扫描、图像识别和信息提取等领域。
2025-07-30 21:48:04 21KB opencv python ocr
1
本内容通过opencv搭建了具备人脸录入、模型训练、识别签到功能的人脸识别签到系统,每一步的操作都进行了详细讲解,代码也经过反复调试,确保到手后便能够直接使用,特别适合新手学习、学生交课堂作业和需要项目实战练习的学习者,本资源提供售后,可在线指导直至运行成功。 在本教程中,我们将学习如何使用OpenCV和Python来构建一个功能完整的人脸识别签到系统。人脸识别技术通过分析和比较人脸特征来识别人的身份,这项技术在安全验证、身份识别、以及用户交互等多个领域有着广泛的应用。OpenCV是一个开源的计算机视觉和机器学习软件库,提供了大量的视觉处理功能,而Python作为一种高级编程语言,因其易读性和简洁的语法被广泛应用于初学者教育和快速原型开发。 本教程首先会介绍OpenCV的基本使用方法,如安装、配置环境以及如何调用库中的函数等。接下来,教程会详细讲解如何进行人脸录入,包括拍摄或导入人脸图像、调整图像大小以及将图像转换为灰度图等预处理步骤。此外,还会深入讲解如何使用OpenCV进行人脸检测,这通常涉及到级联分类器的使用,以及如何训练模型以识别特定的人脸。 在系统搭建的过程中,我们还会接触到图像处理的相关知识,例如特征提取、直方图均衡化以及图像二值化等技术。这些技术对于优化人脸识别的效果至关重要,因为它们可以提高图像的质量,使得人脸的特征更加突出,从而便于后续的人脸比对和识别。 除了录入和检测,本教程还包含了如何进行人脸识别的讲解。人脸识别通常涉及到机器学习算法,它能够从人脸图像中学习到模式,并在有新的人脸出现时,将其与已有的人脸数据进行比对,以此来识别身份。在本教程中,我们会使用一些简单而有效的方法,比如使用Haar级联、局部二值模式(LBP)和深度学习等技术。 在实现签到功能时,系统将能够记录识别到的人脸信息,并与数据库中的信息进行匹配,从而完成签到。这个过程可能需要连接数据库系统,比如SQLite或MySQL,以存储和查询人脸数据。教程中将提供必要的代码示例和解释,帮助理解如何建立这样的功能。 教程还提供售后服务,解决在系统搭建和运行中可能遇到的任何问题。这为初学者和需要进行项目实战练习的学习者提供了巨大的帮助,因为实践中遇到的问题往往需要专业人士的指导才能有效解决。 这个教程是面向那些对人脸识别技术感兴趣的学习者,特别是对于那些希望在项目中应用这种技术的新手或学生来说,是一个宝贵的资源。它不仅可以帮助他们构建实际可用的系统,还能加深对计算机视觉和机器学习的理解。
2025-06-17 19:24:57 565KB python opencv 人脸识别
1
内容概要: 本文介绍了基于OpenCV的目标识别技术,这是一种计算机视觉技术,用于从图像或视频流中识别和定位特定目标。文章首先概述了目标识别的基本原理,包括图像预处理、特征提取、目标检测和分类。接着,详细阐述了如何利用OpenCV库中的各种工具和算法,如Haar级联分类器、HOG+SVM、深度学习等,来实现目标识别。文章还提供了一个简单的目标识别系统的实现步骤,包括数据集准备、模型训练和测试评估,并解释了代码的关键部分,如如何使用OpenCV进行图像读取、处理和显示,以及如何应用机器学习模型进行目标识别。 使用场景和目标: 目标识别技术在多个领域都有广泛的应用,如安防监控、自动驾驶、工业自动化、医疗影像分析等。在安防监控领域,目标识别可以用于实时监测特定区域,识别可疑行为或人员。在自动驾驶中,该技术能够帮助车辆识别行人、车辆和交通标志,提高行车安全。在工业自动化中,目标识别可以用于产品质量检测,自动识别和分类产品。在医疗影像分析中,该技术可以辅助医生识别病变区域,提高诊断的准确性。本文的目标是提供一个基于OpenCV的目标识别框架,使开发者能够快速构建和部署目标识别系统,以满足不同场
2025-06-16 16:54:10 125.33MB opencv python 目标识别
1
在现代农业中,高效精准的采摘技术对于提高茶叶生产效率和质量至关重要。"基于python+opencv的茶叶嫩芽识别与采摘点定位方法"是一种利用计算机视觉技术实现的自动化解决方案。OpenCV(开源计算机视觉库)是这个项目的核心工具,Python则是实现算法和逻辑的编程语言。下面将详细阐述这一方法涉及的知识点。 我们要理解OpenCV的基本概念。OpenCV是一个强大的跨平台计算机视觉库,提供了多种图像处理和计算机视觉功能,包括图像读取、图像增强、特征检测、对象识别等。在本项目中,OpenCV主要用于处理和分析茶叶嫩芽的图像数据。 1. 图像预处理:在识别茶叶嫩芽之前,通常需要对原始图像进行预处理。这包括灰度化、直方图均衡化、二值化等步骤,目的是减少噪声,增强图像特征,使茶叶嫩芽更容易被算法识别。 2. 特征提取:特征提取是识别的关键环节。OpenCV提供了如HOG(Histogram of Oriented Gradients)、SIFT(Scale-Invariant Feature Transform)、SURF(Speeded Up Robust Features)等多种特征描述符。在茶叶嫩芽识别中,可能需要选择适合特征的描述符,如边缘或颜色特性。 3. 分割与目标检测:通过色彩空间转换和阈值分割,可以将茶叶嫩芽从背景中分离出来。OpenCV的Canny边缘检测、GrabCut或 watershed算法等可以用于此目的。之后,可以使用模板匹配或机器学习方法(如Haar级联分类器、Adaboost、支持向量机)来检测茶叶嫩芽的位置。 4. 采摘点定位:一旦茶叶嫩芽被识别,下一步是确定最佳采摘点。这可能涉及到形状分析,如计算轮廓的面积、周长、圆度等,或者利用深度学习模型预测最适宜的采摘位置。 5. Python编程:Python作为脚本语言,以其简洁明了的语法和丰富的库支持,为实现上述算法提供了便利。例如,NumPy库用于矩阵运算,Pandas用于数据处理,Matplotlib和Seaborn用于可视化结果。 6. 实时处理:如果项目涉及实时视频流处理,OpenCV的VideoCapture模块可以捕获视频,并实时应用上述算法。这需要优化代码性能,确保算法能在实时性要求下运行。 7. 深度学习应用:虽然标签没有明确提到,但现代的计算机视觉系统常利用深度学习技术,如卷积神经网络(CNNs)进行更复杂的图像识别。可以训练一个专门针对茶叶嫩芽的CNN模型,以提升识别精度。 "基于python+opencv的茶叶嫩芽识别与采摘点定位方法"涵盖了计算机视觉领域的多个重要知识点,包括图像处理、特征提取、目标检测、点定位以及Python编程和深度学习的应用。通过这些技术,可以实现茶叶采摘过程的自动化,提高农业生产效率。
2025-06-11 18:53:34 4.23MB opencv python
1
OpenCV-Python实现简单的道路检测与交通标志识别代码
2025-05-24 09:38:06 3.66MB opencv python
1
本项目使用OpenCV和Python语言,实现了一个实时视频流车牌识别系统。该系统可以从摄像头中获取视频流,并自动识别车辆的车牌号码。以下是该项目的详细描述: 步骤1:视频流获取 首先,我们需要获取视频流并将其传递给系统。我们可以使用OpenCV库中的VideoCapture功能,该功能可从摄像头、文件或网络中读取视频流。在本项目中,我们将使用电脑摄像头获取实时视频流。 步骤2:车牌识别 为了识别车牌号码,我们需要先检测车辆的位置和大小。在本项目中,我们将使用Haar级联分类器来检测车辆。 在检测到车辆后,我们可以使用车牌识别算法对车牌进行识别。在本项目中,我们将使用基于深度学习的车牌识别算法,例如卷积神经网络(CNN)或循环神经网络(RNN)。识别结果将被绘制在车辆矩形框上。 步骤3:结果输出 最后,我们可以将识别结果输出到控制台或保存到文件中。在本项目中,我们将在车牌上绘制识别结果,并将视频流显示在屏幕上。 以上是本项目的详细描述。该系统可以帮助警察、停车场管理等监控场合快速识别车辆的车牌号码。
2025-05-08 16:55:53 4.73MB opencv python
1
该资源为opencv_python-4.11.0.86-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl,欢迎下载使用哦!
2025-03-27 11:25:38 40.27MB opencv_python opencv-python
1
内容概要: 本文介绍了基于OpenCV的答题卡识别判卷系统,该系统能够自动识别和评分标准化考试的答题卡。文章首先概述了答题卡识别技术的重要性,尤其是在大规模考试中,它能够提高评分效率和准确性。接着,详细阐述了系统的工作原理,包括图像预处理、答题卡定位、选项识别和答案统计。文章介绍了如何使用OpenCV进行图像二值化、轮廓检测、形状匹配和像素分析来识别答题卡上的标记。最后,提供了一个简单的答题卡识别流程,包括图像采集、答题卡区域定位、选项区域识别和答案统计,并解释了代码的关键部分,如如何使用OpenCV进行图像处理和识别算法的实现。 使用场景和目标: 答题卡识别技术在教育考试、问卷调查和在线测试中具有广泛的应用。在教育考试中,该技术可以用于自动评分标准化选择题,减少人工评分的工作量和错误率。在问卷调查中,它可以快速统计调查结果,为市场分析提供即时数据。在线测试中,该技术可以实现即时反馈和评分,增强学习体验。此外,该技术还可以与电子学习平台集成,实现自动化的考试和评估流程。本文的目标是提供一个基于OpenCV的答题卡识别框架,使教育机构和研究人员能够快速构建和部署自动化评分系统
2025-03-06 15:50:46 3.08MB opencv python
1
软件开发设计:应用软件开发、系统软件开发、移动应用开发、网站开发C++、Java、python、web、C#等语言的项目开发与学习资料 硬件与设备:单片机、EDA、proteus、RTOS、包括计算机硬件、服务器、网络设备、存储设备、移动设备等 操作系统:LInux、树莓派、安卓开发、微机操作系统、网络操作系统、分布式操作系统等。此外,还有嵌入式操作系统、智能操作系统等。 网络与通信:数据传输、信号处理、网络协议、网络与通信硬件、网络安全网络与通信是一个非常广泛的领域,它涉及到计算机科学、电子工程、数学等多个学科的知识。 云计算与大数据:包括云计算平台、大数据分析、人工智能、机器学习等,云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。
2024-10-13 12:43:37 4.99MB python 爬虫 毕业设计 课程设计
1
在图像处理领域,OpenCV是一个强大的库,尤其在计算机视觉任务中被广泛应用。这个压缩包文件专注于使用OpenCV和Python进行轮廓检测,旨在帮助我们识别和处理图像中的特定对象,特别是红色和蓝色的目标。让我们详细了解一下这个主题。 我们要理解的是**二值化**。在图像处理中,二值化是一种将图像转换为黑白两色调的过程,以便更容易地分析和处理。通过设置一个阈值,图像中的像素会被分为两个类别:低于阈值的像素变为黑色,高于或等于阈值的像素变为白色。这样可以简化图像并突出目标特征。 接着是**阈值分割**,这是二值化的一个变种,它允许我们根据不同的条件来分割图像。在处理红蓝目标时,我们可以设置特定的色彩阈值,使红色和蓝色目标在图像中脱颖而出。 **轮廓检测**是图像处理中的重要步骤,OpenCV提供了`findContours`函数来实现这一功能。该函数可以找出图像中所有独立的不连续区域的边界,这对于识别和定位图像中的特定形状非常有用。在本案例中,我们可能使用它来找到红色和蓝色目标的边缘。 筛选是后续步骤,目的是从检测到的所有轮廓中选择出我们需要的目标。这通常通过比较轮廓的面积、周长、形状等特征来完成。例如,我们可以过滤掉面积过小或过大,或者形状不符合预期的对象。 **绘制和展示**是将结果可视化的重要环节。`cv2.drawContours`函数可以帮助我们在原始图像上绘制出检测到的轮廓,这不仅有助于验证算法的效果,也方便了后续的人工分析和调整。 压缩包中的`demo2.png`和`demo1.png`是示例图像,它们可能包含了红色和蓝色目标,供我们运行代码进行处理。`generate_contour.py`是主要的Python脚本,里面包含了上述提到的所有图像处理步骤。通过运行这个脚本,我们可以看到如何应用这些技术来检测和显示图像中的目标。 这个压缩包提供了一个完整的流程,从图像预处理到目标检测,再到结果展示,对于学习OpenCV和Python在图像处理上的应用,尤其是轮廓检测,是一个很好的实例。掌握这些知识后,你不仅可以识别特定颜色的目标,还能将其应用到更复杂的计算机视觉任务中,如目标跟踪、物体识别等。
2024-08-26 08:12:48 111KB 图像处理 opencv python
1