内容概要:本文档详细介绍了通过MATLAB实现的基于改进蜣螂算法(MSADBO)优化的卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型,用于多特征时间序列的回归预测任务。文档强调了传统优化算法存在的局限性,并展示了MSADBO作为一种全局优化手段的优势。通过结合MSADBO优化CNN-LSTM超参数,模型能够在诸如电池寿命、金融市场、气象等领域提供精准可靠的多特征回归预测,极大提升了训练效率与模型性能。文中还提供了详细的模型结构、代码实现及训练效果展示。 适合人群:具有一定机器学习和深度学习基础的技术研究人员、从事数据分析及相关应用开发的工程师。 使用场景及目标:适用于处理复杂、多样化且带有时序特性的多特征数据。目标是在保持较高精度的情况下,优化模型的训练过程,加快收敛速度,减少过拟合的风险。该模型特别适合金融市场的走势预测、天气变化趋势分析以及工业设备的状态监控与预测维护等领域。 其他说明:除了模型构建和代码解析外,文档还探讨了数据预处理的重要性,包括清理、标准化和平滑噪声,以确保高质量的数据供给给神经网络。此外,对于高维优化空间下可能出现的收敛缓慢问题进行了讨论,并提供了
2025-07-21 13:47:41 33KB 优化算法 LSTM MATLAB
1
在深度学习和机器学习领域,图像描述生成一直是一个热门的研究方向,它涉及到从图像中提取特征,结合语言模型生成图像的描述文本。本文介绍了一种使用卷积神经网络(CNN)和长短期记忆网络(LSTM)构建图像描述生成器的方法,这种方法不仅能够捕捉图像的视觉特征,还能生成连贯、丰富的文本描述。 CNN作为深度学习中的一种重要模型,特别擅长于图像数据的特征提取和分类任务。在图像描述生成中,CNN可以用来提取图像的关键视觉信息,如边缘、形状和纹理等。通过预训练的CNN模型,如VGG16、ResNet等,可以从输入图像中提取出一系列的特征向量,这些特征向量将作为后续语言模型的输入。 LSTM则是一种特殊的循环神经网络(RNN),它能够通过门控机制有效地解决传统RNN在处理长序列数据时出现的梯度消失或梯度爆炸的问题。在图像描述生成任务中,LSTM用于根据CNN提取的图像特征生成序列化的描述文本。通过编码器-解码器(Encoder-Decoder)框架,CNN先进行图像的编码,然后LSTM根据编码后的特征进行文本的解码,最终生成描述图像的文本。 源代码文件“training_caption_generator.ipynb”可能包含用于训练图像描述生成器的Python代码,其中可能涉及到数据预处理、模型构建、训练过程以及结果评估等步骤。该文件中的代码可能使用了TensorFlow或PyTorch等深度学习框架来实现。 “testing_caption_generator.py”则可能是一个用于测试训练好的模型性能的脚本,它可能会加载模型,并对新的图像数据进行预测,生成相应的描述文本。 “descriptions.txt”文件可能包含了用于训练和测试模型的数据集中的图像描述文本,这些文本需要与图像相对应,作为监督学习中的标签。 “features.p”和“tokenizer.p”这两个文件可能是保存了预处理后的特征数据和文本分词器的状态,它们是模型训练和预测时所必需的辅助数据。 “models”文件夹可能包含了训练过程中保存的模型权重文件,这些文件是模型训练完成后的成果。 “model.png”文件则可能是一个模型结构图,直观地展示了CNN和LSTM相结合的网络结构,帮助理解模型的工作原理和数据流。 “ipynb_checkpoints”文件夹则可能是Jupyter Notebook在运行时自动保存的检查点文件,它们记录了代码运行过程中的状态,便于在出现错误时恢复到之前的某个运行状态。 综合上述文件内容,我们可以了解到图像描述生成器的设计和实现涉及到深度学习的多个方面,从数据预处理、模型构建到训练和测试,每一个环节都至关重要。通过结合CNN和LSTM的强项,可以构建出能够理解图像并生成描述的深度学习模型,这在图像识别、辅助视觉障碍人群以及搜索引擎等领域有着广泛的应用前景。
2025-07-17 20:24:06 100.28MB lstm 深度学习 机器学习 图像识别
1
This model leverages LSTM and the Kelly Criterion to engage in daily Nasdaq trading. The model achieved significantly better returns than…
2025-07-14 16:46:50 261KB lstm
1
软件缺陷预测技术对于确保软件产品的可靠性以及降低软件开发和维护成本具有重要作用。传统的软件缺陷预测方法依赖于软件度量元信息,如代码行数、控制流圈复杂度等,来构建机器学习模型进行缺陷预测。然而,这种方法存在明显的不足,因为它无法充分捕捉软件的语法结构信息和语义信息,导致缺陷预测准确性受限。 为了解决这一问题,本文提出了一种基于程序语义和长短期记忆网络(LSTM)的软件缺陷预测模型,简称为Seml。Seml模型采用深度学习技术来学习程序的语义信息,并用以预测程序中可能出现的缺陷。该模型的一个关键特点是,将程序源码中抽取的token转换成分布式向量表示,这样做能更好地表达代码的语义信息,从而有助于提升软件缺陷预测的准确率。 Seml模型在公开数据集PROMISE上进行的实验结果表明,其在项目内缺陷预测和跨项目缺陷预测方面的准确率均高于现有的基于深度学习的方法以及基于度量元的方法。这表明,Seml模型在捕获程序的语义信息方面更具优势,能够更准确地预测软件缺陷。 在讨论Seml模型的过程中,文章还提到了词嵌入技术。词嵌入是一种将词语映射到实数向量的技术,它使得相似的词语在向量空间中也具有相似的距离。这种方法在处理自然语言处理(NLP)任务中十分常见,而在软件缺陷预测模型中使用词嵌入技术,是为了更有效地处理程序源码中的token,从而更好地捕捉代码的语义信息。 此外,文章还提到了其他一些关键点。比如,软件早期的缺陷预测技术通常利用软件模块及其标签(有缺陷/无缺陷)来构建机器学习模型,并利用构建好的模型预测新模块是否含有缺陷。而大多数现有工作都利用了人工设计的度量元作为特征,例如Halstead特征、McCabe特征、CK特征、Mood特征等。这些特征虽然在一定程度上有助于软件缺陷预测,但仍然无法充分捕捉程序的语义信息。 作者在文献中引用了Wang等人提出的一种基于深度学习的缺陷预测方法,该方法使用了深度信念网络(DBN)来处理从程序源码中抽取的序列,并从中学习程序语义信息。尽管实验结果表明这种方法能够取得比传统方法更高的F1值,但其存在的问题是DBN在处理大规模数据时的效率和准确性。 从这些讨论中我们可以看出,Seml模型的核心优势在于其能够通过深度学习和词嵌入技术,更好地捕捉和表达程序的语义信息。这对于提升软件缺陷预测的准确性和效率至关重要。通过这一点,Seml模型有望在软件工程领域产生积极的影响,为开发者提供更加强大和精确的工具,以辅助他们在软件开发过程中及时发现潜在的缺陷,从而进一步提高软件质量和可靠性。
2025-06-23 15:20:37 505KB 计算机应用技术
1
内容概要:本文介绍了LSTM-VAE(基于长短期记忆网络的变分自编码器)在时间序列数据降维和特征提取中的应用。通过使用MNIST手写数据集作为示例,详细展示了LSTM-VAE的模型架构、训练过程以及降维和重建的效果。文中提供了完整的Python代码实现,基于TensorFlow和Keras框架,代码可以直接运行,并附有详细的注释和环境配置说明。此外,还展示了如何通过可视化手段来评估模型的降维和重建效果。 适合人群:对深度学习有一定了解的研究人员和技术开发者,尤其是关注时间序列数据分析和降维技术的人群。 使用场景及目标:适用于时间序列数据的降维、特征提取、数据压缩、数据可视化以及时间序列的生成和还原任务。目标是帮助读者掌握LSTM-VAE的原理和实现方法,以便应用于实际项目中。 其他说明:本文提供的代码可以在本地环境中复现实验结果,同时也支持用户将自己的数据集替换进来进行测试。
2025-06-22 23:22:32 498KB
1
内容概要:本文详细介绍了利用Python进行微博文本情感分析的研究,涵盖了三种主要的技术手段:情感词典、支持向量机(SVM)以及长短期记忆网络(LSTM)。作者首先解释了数据预处理的方法,如编码选择、表情符号转换等。接着分别阐述了每种方法的具体实现步骤及其优缺点。情感词典方法简单直接但准确性有限;SVM方法通过TF-IDF提取特征,适用于中小规模数据集;LSTM则凭借深度学习的优势,在大规模数据集中表现出更高的准确性和鲁棒性。此外,还探讨了一个融合多种模型的混合方法。 适合人群:对自然语言处理、机器学习感兴趣的研发人员和技术爱好者,尤其是希望深入了解情感分析领域的从业者。 使用场景及目标:① 快速构建情感分析原型系统;② 在不同规模的数据集上评估并选择合适的情感分析模型;③ 提升微博评论等社交媒体文本的情感分类精度。 其他说明:文中提供了完整的代码示例和数据集下载链接,便于读者动手实践。同时强调了各方法的特点和局限性,帮助读者更好地理解和应用相关技术。
2025-06-22 13:42:34 1.94MB
1
内容概要:本文详细介绍了基于麻雀搜索算法(SSA)优化的CNN-LSTM-Attention模型在数据分类预测中的应用。项目旨在通过SSA算法优化CNN-LSTM-Attention模型的超参数,提升数据分类精度、训练效率、模型可解释性,并应对高维数据、降低计算成本等挑战。文章详细描述了模型的各个模块,包括数据预处理、CNN、LSTM、Attention机制、SSA优化模块及预测评估模块。此外,文中还提供了具体的Python代码示例,展示了如何实现模型的构建、训练和优化。 适合人群:具备一定编程基础,尤其是对深度学习、优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①优化数据分类精度,适用于高维、非线性、大规模数据集的分类任务;②提升训练效率,减少对传统手工调参的依赖;③增强模型的可解释性,使模型决策过程更加透明;④应对高维数据挑战,提高模型在复杂数据中的表现;⑤降低计算成本,优化模型的计算资源需求;⑥提升模型的泛化能力,减少过拟合现象;⑦推动智能化数据分析应用,支持金融、医疗、安防等领域的决策制定和风险控制。 阅读建议:本文不仅提供了详细的模型架构和技术实现,还包含了大量的代码示例和理论解释。读者应结合具体应用场景,深入理解各模块的功能和优化思路,并通过实践逐步掌握模型的构建与优化技巧。
2025-06-21 15:49:47 47KB Python DeepLearning Optimization
1
在股票市场分析中,预测股票价格走势是一项复杂的任务,通常需要借助先进的技术手段来完成。LSTM(长短期记忆网络)作为一种特殊的循环神经网络(RNN),在处理和预测时间序列数据方面表现出色。本文详细介绍了如何使用LSTM网络对四只股票的价格走势进行预测,并展示了一个针对贵州茅台股票(Kweichow Moutai)的实例代码。 为了进行股票价格预测,需要从多个角度和层次对股票数据进行深入的探索性数据分析(EDA)。在示例代码中,通过加载和处理股票数据,包括将日期转换为时间戳格式并按日期排序,设置日期为索引,然后使用可视化工具展示收盘价随时间的变化趋势。通过绘制不同时间窗口的移动平均线(MA),可以平滑价格波动并识别长期趋势。此外,还计算并绘制了其他技术指标,这些技术指标通过量化过去价格和成交量的数据来提供潜在买卖信号,帮助投资者做出更为明智的投资决策。 代码中展示了如何使用pandas库导入必要的数据处理模块,以及使用matplotlib和seaborn库进行数据可视化。在进行LSTM模型训练之前,还使用了MinMaxScaler对数据进行归一化处理,以及运用了滚动统计量计算技术指标。这些预处理步骤对于提高模型性能至关重要。 在此基础上,代码中进一步引入了TensorFlow和Keras框架来构建LSTM模型。模型构建过程中,使用了序列模型Sequential,添加了包含LSTM层的网络结构,配合Dropout层防止过拟合,以及BatchNormalization层进行特征标准化。为了优化模型训练过程,代码还加入了EarlyStopping和ReduceLROnPlateau回调函数,前者用于停止训练防止过拟合,后者用于降低学习率以突破训练过程中的停滞期。 模型训练完成后,通过计算均方误差(MSE)和平均绝对误差(MAE)来评估模型预测效果。这些评价指标是衡量回归问题中预测准确性的常用方法。 通过以上的步骤,可以实现对股票价格走势的预测。需要注意的是,由于股票市场受到多种复杂因素的影响,预测结果并不能保证完全准确。此外,由于股票市场受到经济周期、政策调整、市场情绪等诸多不可预测因素的影响,即使使用了先进的LSTM模型,依然需要结合投资者的市场经验和其他分析方法来进行综合判断。 本文通过实例代码详细介绍了利用LSTM网络对特定股票价格进行预测的方法和过程,包括数据的导入和预处理、模型的构建和训练、以及模型评估等多个环节。尽管存在一定的不确定因素,但LSTM提供了一种强大的工具来处理和预测股票价格走势,为投资者提供了一种基于数据驱动的决策支持手段。
2025-06-18 14:00:05 780KB lstm
1
卷积神经网络在RadioML2016.10A数据集上的信号识别:基于ResNet的分类准确率与损失函数分析,基于ResNet的卷积神经网络在RadioML2016.10A数据集上的信号识别与性能分析——出图展示分类准确率、混淆矩阵及损失函数迭代曲线,卷积神经网络识别信号 ResNet RadioML2016.10A数据集11种信号识别分类 出图包含每隔2dB的分类准确率曲线、混淆矩阵、损失函数迭代曲线等 Python实现 ,卷积神经网络; ResNet; 信号识别; RadioML2016.10A数据集; 分类准确率曲线; 混淆矩阵; 损失函数迭代曲线; Python实现,卷积神经网络在RadioML2016数据集上的信号识别研究
2025-06-18 09:28:46 1MB xbox
1
本数据集包含了大约1.3w条豆瓣短评,长评,微博,猫眼相关数据集的汇总,可用作电影情感分析,预测等任务,包含情感分类标签,(请注意:数据集中并非全部标签都为真实标签,由于一些评论缺失情感分类,因此使用了深度学习方式填充了标签,因此此数据集无缺失值。 属性说明: Comment:评论内容 Sentiment:情感分类,1-5,分别代表最差到最好 Datetime:评论发出时间 Location:评论发出地点 具体数据集样例: --------------------------------------------------------------------------------------------------------------------- Comment Sentiment Datetime Location 电影好好看,下次最来看一次,哪吒的语言太好听了。 2 2025/4/18 23:03 成都 好看,喜欢,非常喜欢 2 2025/4/18 23:02 崇州 ---------------------------------------------------------------------------------------------------------------------
2025-06-16 16:56:18 3.15MB 情感分类 数据集 深度学习
1