本资源是自相关函数BT法估计功率谱的MATLAB详细代码,包含两个文件,一个是产生实随机信号的函数,另外一个是BT法估计PSD的脚步。 仿真条件设置为有3个正弦波加一个噪声,然后去估计功率谱。 代码中参数设置放置在最前面,包含样本数,延时数、FFT变换的点数,噪声功率,信号的归一化频率、信噪比等参数。 修改任何一个参数,仿真结果就会跟着改变,超级方便,只需修改参数,就可以观察不同参数下的功率谱估计效果。 代码绘制了两种延时数下的功率谱估计效果图,这两个图的横纵坐标均有标签,物理意义明确,可以观察分辨率对正确估计出信号个数的影响。 本资源中所有的代码关键处包含文字注释,编写的代码逻辑清晰,方便各位小伙伴理解、阅读、学习。 下载资源了的小伙伴有疑惑的可以私信我一起解决你的问题。 学习该资源,可以学透自相关函数BT法估计功率谱知识。
2025-12-08 11:44:09 2KB MATLAB 功率谱估计 自相关函数
1
基于MATLAB的无迹卡尔曼滤波算法参数辨识完整代码实现,MATLAB中完整可运行的无迹卡尔曼滤波参数辨识代码解析与实现,无迹卡尔曼滤波参数辨识MATLAB完整代码可运行 ,无迹卡尔曼滤波; 参数辨识; MATLAB完整代码; 可运行,无迹卡尔曼滤波参数辨识代码MATLAB 在当前的控制系统和信号处理领域,卡尔曼滤波器作为一种有效的递归滤波器被广泛研究和应用。无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)是卡尔曼滤波技术的一个重要分支,其核心思想是利用一组精心挑选的采样点(Sigma点)来近似系统的非线性特性,从而在不损失精度的情况下更准确地描述系统状态的转移。无迹卡尔曼滤波器特别适合于处理非线性系统的状态估计问题。 本文档“无迹卡尔曼滤波参数辨识的完整代码实现”旨在提供一个在MATLAB环境下完整的、可运行的无迹卡尔曼滤波算法实现示例。文档中详细解析了无迹卡尔曼滤波的工作原理,包括其初始化、预测、更新、状态估计和协方差更新等关键步骤。读者通过阅读该文档能够深入理解UKF的算法结构,并能够根据具体应用场景进行代码的调整和优化,实现对自己研究或者工程问题的参数辨识。 文档中提到的“基于学习和数据驱动的无人船舶航向控制和轨迹跟踪”部分,展示了如何将无迹卡尔曼滤波应用于复杂的动态系统的控制和轨迹预测问题。无人船舶作为海洋工程中的重要组成部分,其航向控制和轨迹跟踪技术的研究对于提高船舶的自主导航能力、保障海上交通安全以及开发无人船舶技术具有重大意义。通过数据驱动的方法和无迹卡尔曼滤波算法,可以有效提高对海洋环境变化和船舶动态行为的预测准确性,进而实现对无人船舶更为精确的控制。 在实际应用中,无迹卡尔曼滤波器的参数设置对算法的性能有着直接的影响。参数辨识是优化UKF算法性能的重要步骤。通过调整相关的参数,比如过程噪声和测量噪声的协方差,可以使滤波器更好地适应实际的动态过程和测量噪声特性。参数辨识过程通常涉及到大量试验和仿真实验,以找到最佳的参数配置。 文档中还提供了一些相关的HTML文件和图片资源,这些资源有助于读者更好地理解无迹卡尔曼滤波算法以及如何在MATLAB中实现相关代码。这些图片可能包括算法流程图、系统动态示意图等,有助于可视化复杂概念和算法过程。HTML文件中可能包含了对文档结构的索引或者对特定算法部分的详细介绍,为读者提供了一个清晰的学习路径。 文档“无迹卡尔曼滤波参数辨识的完整代码实现”不仅提供了一个宝贵的无迹卡尔曼滤波算法的实现工具,而且通过丰富的示例和解释,使读者能够更加深入地理解无迹卡尔曼滤波技术,并将其应用到实际的控制系统和信号处理问题中。这种技术的掌握对于工程师和研究人员来说具有很高的实用价值,能够显著提高处理非线性动态系统的效率和精度。
2025-11-25 15:58:50 348KB
1
空间域图像增强技术主要通过直接处理图像像素来改进图像的质量,这是数字图像处理领域中重要的技术手段之一。该技术主要包括点处理和掩模处理两种方法。点处理涉及单个像素的运算,比如直方图均衡化,这是一种调整图像对比度的方法,通过扩展图像的直方图分布来使图像的对比度更佳。而掩模处理涉及使用一个模板或掩模(通常是一个子图像),根据这个掩模在图像的每个像素周围进行局部操作,典型的掩模处理方法之一是邻域平均法,它主要用于图像平滑,去除噪声。 直方图均衡化原理涉及到图像的统计特性,通过统计原图像的像素分布,再通过灰度变换函数对像素进行重新映射,使得原图的直方图分布更加均匀,从而达到增强图像对比度的效果。尽管直方图均衡化在视觉效果上有很大提升,但均衡化后的直方图并不一定完全均匀分布,原因在于图像像素值和灰度级是离散的,且均衡化处理时可能会造成灰度级的合并。 邻域平均法是图像平滑的一种常用技术,其基本思想是用像素及其邻域内像素的平均值来替换该像素的值。这种方法可以有效地去除图像的随机噪声,但同时也可能使图像边缘变得模糊。为了克服这一缺点,引入了加门限法,这种改进方法通过判断邻域像素值与中心像素值之间的差异,并设置一个阈值,只有当差异小于这个阈值时才进行平均处理,从而可以更好地保留图像的边缘信息。 在实验中,使用了MATLAB这一强大的科学计算工具来实现上述算法。MATLAB内置了各种函数,如“histeq”用于直方图均衡化处理,而“imhist”则用于显示图像的直方图。除了内置函数,MATLAB也支持用户自定义程序,通过编写相应代码来实现更复杂的图像处理功能。 通过本实验的学习与实践,可以深刻理解空间域图像增强的原理,掌握直方图均衡化和邻域平均法等常用图像处理技术,并通过编写和运行MATLAB程序来加深对理论知识的理解和应用能力。 实验分析部分,通过对原图像的直方图均衡化处理,可以观察到处理前后的图像及其直方图变化,从视觉效果上比较图像的亮度、对比度及细节信息的增强。此外,通过在图像中加入高斯噪声,再进行4-邻域平均平滑处理,可以观察到噪声消除效果及边缘的模糊和改善情况。实验结论部分则对实验结果进行了总结,解释了图像处理前后效果的差异以及产生的原因。 附件部分则包含了实验设计的结果和程序清单,提供了实验操作的具体细节和代码。这些附件是实验报告的重要组成部分,能够让读者了解实验的具体操作步骤,也为其他研究人员提供了参考和借鉴的可能。 本实验报告通过理论学习和MATLAB编程实践,深入探讨了空间域图像增强技术,不仅让读者学习到了基本的图像处理知识,而且通过实验加深了对相关技术的理解和应用能力。
1
**密度泛函理论(DFT)**是一种在量子力学中计算多体系统,特别是原子、分子和凝聚态物质电子结构的高效方法。该理论的基本思想是通过系统的电子密度而不是多电子波函数来描述整个系统。这大大简化了计算,使得对于大型系统也可以进行精确的模拟。 **MATLAB源代码**在科学计算领域被广泛使用,因其易读性、丰富的库支持和强大的数值计算能力而受到青睐。在DFT的实现中,MATLAB提供了良好的平台,能够处理复杂的数学运算和数据可视化。 **DFT的MATLAB实现**通常包括以下关键步骤: 1. **基函数选择**:在DFT中,电子密度是通过一组基函数来近似的。常见的基函数有高斯型原子轨道、平面波等。MATLAB代码会定义这些基函数,并用于构建系统的哈密顿量。 2. **Kohn-Sham方程**:DFT的核心是Kohn-Sham方程,它是一组非线性薛定谔方程,用来求解系统的单电子波函数。MATLAB代码将实现求解这些方程的算法,如迭代法(如梯度下降法或共轭梯度法)。 3. **交换-相关势**:DFT中的交换-相关势是理论的关键部分,它反映了电子间的相互作用。MATLAB代码会包含预定义的交换-相关势函数,如LDA(局部密度近似)和GGA(广义梯度近似)。 4. **能量计算**:通过求解Kohn-Sham方程得到电子密度后,可以计算系统的总能量。这包括动能、势能和交换-相关能量等项。 5. **几何优化**:MATLAB代码还会包含对分子几何的优化过程,通过最小化能量找到分子的稳定构型。 6. **结果分析**:MATLAB的可视化功能可以用于展示电子密度、分子轨道图、电荷分布等结果,帮助理解计算结果。 在名为“dft-master”的压缩包中,可能包含了实现以上步骤的各种MATLAB脚本和函数,如初始化设置、矩阵操作、迭代求解、能量计算和输出结果的脚本。用户可以通过阅读和运行这些源代码,深入理解DFT的计算流程,并可能对其进行修改以适应特定的研究需求。 需要注意的是,DFT的MATLAB实现往往需要一定的编程基础和量子化学知识。理解和调试代码可能涉及到对量子力学原理的深入理解,以及对MATLAB编程的熟练掌握。对于初学者,建议先学习基本的DFT理论和MATLAB基础,再逐步尝试理解并使用这些源代码。
2025-11-03 16:46:18 34KB 系统开源
1
传统感应电模型将转子侧导条等效为三相,这种等效只适用于电机无内部故障的情形下使用。如果电机发生匝间短路、转子断条等内部故障,则需要建立多回路模型对电机暂态过程进行仿真。本人研究生,在学习期间写了这个感应电机发生1根转子断条故障的多回路仿真模型,并用m语言实现。可能研究感应电机故障的学生会用到,在此分享给大家!
2025-10-30 14:04:14 3KB matlab
1
matlab改变代码颜色CNNF 演示代码“学习有效的密集匹配的新功能的原理” 内容 此演示代码包包括6个不同的部分。 “提取器”:特征提取器,为演示,我们提供16通道立体声和光学快速模型。 (其余内容,包括培训代码,将在以后发布。) “ PMBP原始”:用于立体和光流的PMBP [3]连续密集算法。 如果将“ weight_pw”值设置为零,则还可以产生PatchMatch [2]算法的结果。 简而言之,该软件包提供了4种算法(PMBP立体声,PMBP光学流,PatchMatch立体声,PatchMatch流)。 该软件包由[2]的作者编写。 “ PMBP改进”:通过实现我们的匹配功能,该包是从“ PMBP原始”中修改而来的。 4种匹配算法与上述相对应。 “ CostFilter-original”:这是用于立体匹配和光流的原始costvolume [1]方法(基于粒子)。 “ CostFilter-improved”:这是实施了我们的功能方案的改进的costfilter。 “工具:”此软件包提供了一些有用的matlab工具来更改数据格式(例如,将“ flo”更改为“ int16 p
2025-10-29 21:23:01 7.54MB 系统开源
1
利用MATLAB程序代码对西储数据轴承进行动力学建模与仿真的方法。首先阐述了轴承动力学建模的基础理论,包括力学特性和运动规律等关键要素。接着展示了具体实现步骤,从读取西储数据开始,经过定义模型参数、构建动力学方程到最后使用Simulink工具箱完成仿真,并输出结果图表。文中不仅强调了MATLAB提供的强大计算能力和丰富工具箱对于简化建模流程的作用,同时也指出了这种建模方式能够帮助工程师们深入理解轴承的工作机制及其性能特征,进而提升产品设计质量和效率。 适合人群:从事机械工程相关领域的研究人员和技术人员,尤其是那些希望借助先进的数学建模手段改进现有工作的专业人士。 使用场景及目标:适用于需要对机械设备特别是旋转部件(如轴承)进行性能评估、故障诊断或者优化设计的研究项目中。通过对轴承动力学行为的模拟,可以提前发现潜在问题并提出解决方案,减少实验成本和时间消耗。 其他说明:文中给出了一段简化的MATLAB代码示例用于演示整个建模过程,但实际应用时还需根据具体情况调整参数配置。此外,掌握一定的MATLAB编程技能将会极大地方便用户操作和理解本文所涉及的技术细节。
2025-10-28 17:32:35 287KB
1
在现代机械工程领域中,轴承作为支撑旋转轴并减小摩擦的关键零部件,其性能直接影响整个机械系统的稳定性和使用寿命。随着机械工业的发展,对轴承性能的要求越来越高,因此轴承动力学的研究逐渐成为热点。轴承动力学建模是研究轴承在动态工作条件下,其内部力和运动状态变化规律的基础性工作。通过建立准确的轴承动力学模型,可以在设计阶段预测和优化轴承的性能,减少后期的维护成本和故障发生概率。 Matlab作为一种高性能的数值计算和可视化软件,广泛应用于科学研究和工程计算中。利用Matlab进行轴承动力学建模和仿真,可以方便地实现复杂的数值计算和动态仿真。Matlab提供了丰富的函数库和工具箱,其中就包括了用于动力学分析和仿真的工具箱,如Simulink。这使得研究者和工程师能够更高效地进行轴承动力学的建模工作,以及进行相应的仿真分析。 西储数据(Purdue University Rolling Element Bearing Data Center,简称Purdue Data)是一个在轴承数据研究方面具有权威性的数据库,提供了大量的实验数据和轴承动力学相关的理论研究资料。通过使用西储数据,研究者可以在更为详实的数据基础上进行轴承动力学的建模和仿真工作,提高模型的准确性和可靠性。西储数据驱动的轴承动力学建模与仿真,将实验数据和仿真结果相结合,为轴承设计和故障诊断提供了强大的技术支持。 在轴承动力学建模的具体实施过程中,首先需要定义轴承的几何参数和材料属性,如内圈、外圈、滚动体的尺寸和材料,以及接触刚度、阻尼等参数。然后根据牛顿第二定律或拉格朗日方程,建立轴承的动力学方程。接下来,可以运用Matlab中的数值计算方法,如欧拉法、龙格-库塔法等,对动力学方程进行求解。通过编写Matlab程序代码,可以实现轴承动力学模型的建立、求解以及动态响应的仿真分析。 在实际应用中,轴承动力学模型可以用于分析轴承在不同工况下的力学行为,如载荷分布、应力应变状态、振动特性等。此外,还可以利用仿真技术进行轴承故障的预测和诊断,提高轴承维护的效率和可靠性。通过Matlab程序代码实现的轴承动力学仿真,能够帮助工程师直观地理解轴承的动态性能,并为轴承的设计优化提供指导。 文章标题基于西储数据的轴承动力学建模与仿真,以及相关的文件名,都表明了本研究的主题和重点。通过这些文件,我们可以看到研究者们是如何利用西储数据进行轴承动力学建模,并利用Matlab工具进行仿真分析的。这些研究成果不仅可以应用在新型轴承的设计开发中,也对现有轴承的故障分析和改进提供了科学依据。 在轴承动力学研究中,仿真的重要性不容忽视。仿真技术可以在不进行实物实验的情况下,对轴承在各种复杂条件下的行为进行模拟。这样不仅可以节省大量的实验成本,还可以在短时间内获得大量数据进行分析。通过仿真,可以对轴承的动态响应进行全面的评估,包括在不同转速、不同载荷、不同润滑条件下的性能变化。这对于轴承的设计优化和性能提升具有重要的意义。 轴承动力学建模与仿真是一项综合性强、应用广泛的研究课题。它结合了材料学、力学、计算数学等多学科知识,是机械工程领域内一个重要的研究方向。借助于Matlab的强大计算和仿真能力,结合权威的西储数据,研究者可以更加精准地进行轴承动力学的研究工作,推动轴承技术的发展和应用。未来,随着仿真技术的不断完善和提高,轴承动力学的研究将更加深入,轴承的性能也将得到进一步的提升。
2025-10-28 17:32:12 642KB paas
1
该库包含材料点方法的matlab源代码,可以通过相场法进行弹性、弹塑性或脆性断裂分析。_This repository contains matlab source code for material point methods with the option of performing elastic, elasto-plastic or brittle fracture analysis via the phase field method..zip
2025-10-21 19:06:33 220KB jar包
1
自适应波束形成与Matlab程序代码 1.均匀线阵方向图 2.波束宽度与波达方向及阵元数的关系 3. 当阵元间距时,会出现栅瓣,导致空间模糊 4. 类似于时域滤波,天线方向图是最优权的傅立叶变换 5.最大信噪比准则方向图和功率谱 6.ASC旁瓣相消----MSE准则 7.线性约束最小方差(LCMV)准则 8.Capon beamforming 9.不同方法估计协方差矩阵的Capon波束形成 10.多点约束的Capon波束形成和方向图 11.自适应波束形成方向图 ### 自适应波束形成与Matlab程序代码 #### 1. 均匀线阵方向图 在信号处理领域,尤其是雷达和通信系统中,**均匀线阵**是一种常见的天线配置方式。它由一系列等间隔排列的阵元组成,通过调整阵元之间的相位差可以实现对电磁波的定向发射或接收。对于一个具有`N`个阵元的均匀线阵,当阵元间距`d`与波长`λ`满足一定关系时,能够形成特定的方向图。 **MATLAB示例程序**: ```matlab clc; clear all; close all; imag = sqrt(-1); element_num = 32; % 阵元数 d_lamda = 1/2; % 阵元间距d与波长λ的关系 theta = linspace(-pi/2, pi/2, 200); % 角度范围 theta0 = 0; % 来波方向 w = exp(imag * 2 * pi * d_lamda * sin(theta0) * (0:element_num-1)'); for j = 1:length(theta) a = exp(imag * 2 * pi * d_lamda * sin(theta(j)) * (0:element_num-1)'); p(j) = w' * a; end patternmag = abs(p); patternmagnorm = patternmag / max(patternmag); patterndB = 20 * log10(patternmag); patterndBnorm = 20 * log10(patternmagnorm); % 绘制方向图 figure(1) plot(theta * 180 / pi, patternmag); grid on; xlabel('θ (deg)') ylabel('Amplitude') title(sprintf('%d 阵元均匀线阵方向图, 来波方向为 %d°', element_num, theta0 * 180 / pi)); figure(2) plot(theta, patterndBnorm, 'r'); grid on; xlabel('θ (rad)') ylabel('Amplitude (dB)') title(sprintf('%d 阵元均匀线阵方向图, 来波方向为 %d°', element_num, theta0 * 180 / pi)); axis([-1.5 1.5 -50 0]); ``` **仿真结果**: - **来波方向为 0°** - **不归一化** - **归一化** - **来波方向为 45°** - **不归一化** - **归一化** **结论**:随着阵元数的增加,波束宽度变窄,分辨力提高。 #### 2. 波束宽度与波达方向及阵元数的关系 波束宽度是衡量波束集中程度的一个重要指标。波束宽度越小,意味着方向图主瓣越窄,系统的方向性和分辨能力越强。波束宽度与阵元数`N`、阵元间距`d`以及波达方向`θ`有关。 **MATLAB示例程序**: ```matlab clc; clear all; close all; imag = sqrt(-1); element_num1 = 16; element_num2 = 128; element_num3 = 1024; lambda = 0.1; d = 0.5 * lambda; theta = 0:0.5:90; % 以下代码用于计算不同阵元数下的方向图 % 请注意,为了保持简洁,这里省略了具体的循环计算部分 % 实际操作时应补充完整计算过程 ``` **结论**:阵元数增加时,波束宽度显著减小;波达方向改变时,波束的主瓣位置随之移动。 #### 3. 当阵元间距时,会出现栅瓣,导致空间模糊 当阵元间距`d`接近或超过半个波长时,即`d > λ/2`,方向图上会出现多个副瓣(称为栅瓣),这些副瓣可能会与主瓣重叠,从而导致信号的空间分辨能力下降。 **解决方法**:通常可以通过增加阵元间距或采用其他阵列结构(如非均匀线阵)来减少栅瓣的影响。 #### 4. 类似于时域滤波,天线方向图是最优权的傅立叶变换 在自适应波束形成中,天线阵列的方向图可以视为输入信号经过一系列权重(权向量)调整后的输出。这种调整类似于时域滤波器中的加权求和过程。利用傅立叶变换理论,可以有效地分析和设计最优的权向量。 #### 5. 最大信噪比准则方向图和功率谱 最大信噪比(Maximun Signal-to-Noise Ratio, MSNR)准则是一种广泛使用的优化目标,旨在最大化信号相对于噪声的比值。该准则下得到的方向图能够有效抑制噪声干扰,提高信号质量。 #### 6. ASC旁瓣相消——MSE准则 ASC(Adaptive Sidelobe Cancellation)技术是一种有效的旁瓣抑制手段。最小均方误差(Minimum Square Error, MSE)准则则是ASC中常用的优化目标之一,旨在最小化输出信号与期望信号之间的均方误差。 #### 7. 线性约束最小方差(LCMV)准则 LCMV(Linearly Constrained Minimum Variance)准则是在限制条件下的最小方差优化问题。这种准则可以在满足某些约束条件的同时,使得输出信号的方差最小化。 #### 8. Capon波束形成 Capon波束形成是一种基于最小均方误差估计的方法。与传统的MSNR准则不同,Capon波束形成考虑了信号的协方差矩阵,并以此为基础来确定最优权向量。这种方法可以有效抑制旁瓣并增强主瓣。 #### 9. 不同方法估计协方差矩阵的Capon波束形成 在实际应用中,由于信号的真实协方差矩阵通常是未知的,因此需要通过不同的方法来估计这个矩阵。这些方法包括样本协方差矩阵法、最小二乘法等。根据不同的协方差矩阵估计方法,Capon波束形成的性能也会有所不同。 #### 10. 多点约束的Capon波束形成和方向图 多点约束Capon波束形成允许在多个指定方向上同时施加约束,例如要求在某些方向上保持高增益,在其他方向上进行抑制。这种方法可以更加灵活地控制方向图的形状。 #### 11. 自适应波束形成方向图 自适应波束形成是一种能够自动调整方向图的技术,它可以根据接收到的信号动态地改变阵列的权向量。这种方式不仅能够提高系统的抗干扰能力,还能适应不断变化的工作环境。 自适应波束形成技术在现代雷达和通信系统中扮演着极其重要的角色。通过合理选择算法和优化准则,可以有效提升系统的性能,满足复杂的应用需求。
2025-10-20 23:01:37 222KB matlab
1