使用VTK和Qt5的NIfTI(nii.gz)3D可视化工具 使用Python运行 创建一个虚拟环境。 Mac可以使用virtualenv或conda。 Windows必须使用conda。 安装依赖项(PyQt5,vtk和sip) pip install PyQt5 vtk 启动程序python ./visualizer/brain_tumor_3d.py -i "./sample_data/10labels_example/T1CE.nii.gz" -m "./sample_data/10labels_example/mask.nii.gz" 生成PyInstaller二进制文件 注意:必须修改.spec文件中的路径以匹配您的项目目录 Mac: pyinstaller Theia_Mac.spec Windows: pyinstaller Theia_Windows.spec 测试
2022-04-02 10:42:50 119.03MB qt5 vtk mri-images brain-imaging
1
脑肿瘤检测脑核磁共振成像 Brain MRI Images for Brain Tumor Detection_datasets.txt
2021-12-13 23:00:52 309B 数据集
1
MRI强度归一化 使用提出的方法对多通道MRI图像进行强度归一化 。 在原始论文中,作者提出了一种从一组MRI图像中学习一组标准直方图界标的方法。 这些地标然后用于均衡图像的直方图以进行归一化。 在学习和转换中,直方图都用于查找强度界标。 在我们的实现中,界标是根据强度的总范围而不是直方图来计算的。 这个怎么运作: 规范化分两个步骤进行: 学习界标参数: 从一组训练图像中,使用功能learn_intensity_parameters来学习界标参数。 强度参数ì_min和i_max必须由用户设置。 这两个值确定了标准强度标度的最小和最大强度。 methodT= 'spline'; % or
2021-12-06 20:36:46 121.82MB matlab histogram mri-images landmark
1
matlab图像分割肿瘤代码MRI图像的脑肿瘤检测和分割 该存储库包含此项目在MATLAB中的源代码。 其中之一是可以从MATHWORKS导入的功能代码。 我将其包含在此文件中以实现更好的实现。 使用MATLAB从不同的MRI图像集中进行脑肿瘤的检测。 图像处理和分割的概念用于概述给定图像集中的肿瘤区域。
2021-11-03 12:46:55 92KB 系统开源
1
脑肿瘤是大脑中大量正常和异常细胞。 在医学领域,MRI图像被广泛用于脑肿瘤检测。 MRI 图像提供有关人体软组织的广泛信息。 通过使用特征提取技术,该信息可用于脑肿瘤检测。 脑肿瘤可分为良性和恶性。 特征提取和表示技术的共同目标是将分割的对象转换为更好地描述其主要特征和属性的表示。 所提出的方法描述了从 MRI 图像中提取肿瘤。 首先找出脑肿瘤的感兴趣区域进行特征提取,然后计算形状特征。 获得用于良性和恶性肿瘤分类的形状特征。 随机森林在肿瘤分类方面比支持向量机具有更好的准确性。
2021-10-03 15:29:59 527KB Classification MRI images
1
MRI图像中的心脏分割 Heart Segmentation in MRI Images_datasets.txt Heart Segmentation in MRI Images_datasets.zip
2021-03-12 09:07:56 694.14MB 数据集
1