在电力系统中,变压器是至关重要的设备,负责电压转换与电能传输。然而,变压器可能会因为各种原因出现故障,这需要我们及时进行诊断和处理。本项目提供的代码着重于利用bp神经网络对变压器气体故障进行分类,这是一种基于机器学习的方法,能够通过分析变压器油中气体的成分和浓度来判断故障类型。 bp神经网络(Backpropagation Neural Network)是一种常见的多层前馈神经网络,它通过反向传播算法来调整权重和偏置,以最小化预测结果与实际值之间的误差。在这个项目中,bp神经网络被用作故障识别模型,通过学习已知的故障案例数据,建立一个能够预测不同故障类别的模型。 `main.m`和`main1.m`很可能是代码的主程序文件。`main.m`通常包含整个项目的入口点,负责设置参数、加载数据、构建网络结构、训练模型和进行测试。`main1.m`可能包含对`main.m`的补充或改进,例如不同的网络架构、优化算法或者训练策略。 `maydata.mat`文件可能是存储了预处理后的数据集,包含了变压器故障的特征数据和相应的标签。这些特征可能包括变压器气体的种类(如氢气、乙炔、一氧化碳等)、气体的浓度以及其他可能影响故障类型的指标。MATLAB的`.mat`文件可以方便地存储和加载矩阵数据,非常适合用于机器学习项目。 `数据.xlsx`文件则可能是原始数据源,以Excel表格的形式记录了详细的故障案例信息。每一行代表一个样本,列可能包含气体浓度、故障类型等信息。在项目开始时,这些数据会被读入并转化为适合神经网络训练的格式。 在实施这个项目时,首先要进行数据预处理,包括数据清洗、缺失值处理、异常值检测以及特征工程。接着,将预处理好的数据分为训练集和测试集,训练集用于训练神经网络,而测试集用于评估模型的泛化能力。 神经网络的构建通常包括定义输入层、隐藏层和输出层,选择合适的激活函数(如Sigmoid、ReLU等),并设定学习率、迭代次数等超参数。在bp神经网络中,权重和偏置会通过反向传播算法逐步更新,直到网络的输出误差达到可接受的范围。 训练完成后,模型会根据新的气体数据进行故障分类。为了提高模型的稳定性和预测精度,还可以采用集成学习方法,如bagging、boosting或stacking,结合多个bp神经网络的预测结果。 这个项目通过bp神经网络对变压器气体故障进行分类,旨在提供一种有效的故障诊断工具,帮助电力系统维护人员及时发现并处理潜在的问题,保障电力系统的安全稳定运行。
2025-06-10 10:46:52 15KB 神经网络 故障分类 变压器故障
1
基于cnn和pytorch的图像分类代码,适用于初学基于深度学习的图像分类的人
2025-03-24 01:50:47 9KB pytorch 分类算法 图像处理
1
transformer分类代码
2024-05-22 16:50:55 35.03MB 人工智能 transformer
1
基于 pytorch-transformers 实现的 BERT 中文文本分类代码 数据: 从 THUCNews 中随机抽取20万条新闻标题,一共有10个类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐,每类2万条标题数据。数据集按如下划分: 训练集:18万条新闻标题,每个类别的标题数为18000 验证集:1万条新闻标题,每个类别的标题数为1000 测试集:1万条新闻标题,每个类别的标题数为1000
2024-05-09 10:42:25 732.57MB pytorch bert 文档资料 人工智能
1
六、保障措施 (一)加强组织实施 强化部门协同和上下联动,建立健全政府、企业、行业组织和产业联盟、智库等的 协同推进机制,加强在技术攻关、标准制定等方面的协调配合。加强部省合作,依 托国家新型工业化产业示范基地建设等工作,支持有条件的地区发挥自身资源优势, 培育一批人工智能领军企业,探索建设人工智能产业集聚区,促进人工智能产业突 破发展。面向重点行业和关键领域,推动人工智能标志性产品应用。建立人工智能 产业统计体系,关键产品与服务目录,加强跟踪研究和督促指导,确保重点工作有 序推进。 (二)加大支持力度 充分发挥工业转型升级(中国制造 2025)等现有资金以及重大项目等国家科技计 划(专项、基金)的引导作用,支持符合条件的人工智能标志性产品及基础软硬件 研发、应用试点示范、支撑平台建设等,鼓励地方财政对相关领域加大投入力度。 以重大需求和行业应用为牵引,搭建典型试验环境,建设产品可靠性和安全性验证 平台,组织协同攻关,支持人工智能关键应用技术研发及适配,支持创新产品设计、 系统集成和产业化。支持人工智能企业与金融机构加强对接合作,通过市场机制引 导多方资本参与产业发展。在首台(套)重大技术装备保险保费补偿政策中,探索 引入人工智能融合的技术装备、生产线等关键领域。 (三)鼓励创新创业 加快建设和不断完善智能网联汽车、智能语音、智能传感器、机器人等人工智能相 关领域的制造业创新中心,设立人工智能领域的重点实验室。支持企业、科研院所 与高校联合开展人工智能关键技术研发与产业化。鼓励开展人工智能创新创业和解
1
matlab中svm图片分类代码变形零件描述符(DPD) 该代码与ICCV 2013论文《可变形零件描述符》一起用于细粒度识别和属性预测。 === 用户配置 [TODO:简化这些目录路径以最小化用户设置] 在dpd_set_up.m : scratchdir = /scratch % for KDES features, DPD features, etc if strcmp(database, ' bird ' ) dataset_base = /path/to/CUB200- 2011 % you edit this elseif strcmp(database, ' cub200 ' ) dataset_base = /path/to/CUB200- 2010 % you edit this elseif strcmp(database, ' human ' ) dataset_base = /path/to/berkeley-human-attributes-dataset % you edit this end === 运行DPD + DeCAF演示 这是使用具有DeCAF卷
2023-03-06 21:12:28 49.79MB 系统开源
1
lda分类代码matlab 手势识别 用 Python 完成的手势识别项目。 使用的概念: 维度提取:PCA、LDA 分类:kNN、贝叶斯 实现:Python、NumPy、SciPy - - - - - - 重要的 - - - - - - 我不会发布用于该项目的数据集,因为它是其他人的工作。 ——免责声明—— 此来源已上传仅供参考。 背后的动机是为那些主要在 MATLAB 和 Python 中进行模式识别项目的人提供一些支持。 与 MATLAB 相比,教授在 Python 中进行项目的支持量较少。 请不要将我的代码本身用于任何事情。 学习实施方法。 我的实现可能有问题/效率低下。
2023-02-22 19:36:01 7KB 系统开源
1
lda分类代码matlab 重度抑郁症的多部位转移分类 “重度抑郁症多部位转移分类”文章核心代码 系统要求 软件要求 该软件包已在 Ubuntu 18.04、Python 3.6 和 Matlab 2009 上进行测试 Python 依赖 本项目主要依赖以下Python堆栈: 火炬 1.4.0 麻木的学习scipy h5py 参数解析操作系统时间警告 用法 1. 对于 GCN 和 GCNSP 模型: 1.1 多站点池化分类请在Linux终端运行: python train_fmridata_MDD_simple.py --method=GCNSP --train_or_test=train --datadir=${datapath} --pretrain_dir=${pretrain_path} --cuda=0 其中,--method 表示使用的模型(GCN 或 GCNSP)。 --train_or_test 表示从头开始训练,或仅基于我们训练过的模型进行测试。 --datadir 是功能连接数据所在的目录。 --pretain_dir 是训练好的模型所在的目录'。 --cuda 表
2023-01-05 19:14:33 263KB 系统开源
1
lda分类代码matlab 怎么跑 所有matlab源代码都在代码文件夹中。 代码文件夹还包含一个文件夹images ,其中包含我选择的所有图像(从 1 到 20)以及文件夹me中我自己拍摄的照片。 1. PCA 在code文件夹中,运行 pca() 它将首先加载图像,然后生成 PC。 它将进行 2D 和 3D 可视化并绘制 3 个特征面。 然后它将图像投影到 40、80 和 200 维,并使用最近邻进行分类。 所有步骤都在代码的注释中进行了描述。 2.LDA 在code文件夹中,运行 lda() 它将首先加载图像,然后生成 LDA。 它将进行 2D 和 3D 可视化。 然后它将图像投影到 2、3 和 9 维,并使用最近邻进行分类。 所有步骤都在代码的注释中进行了描述。 3. 支持向量机 在code文件夹中,运行 [acc_origin, acc_80, acc_200] = svm(C) 它将首先加载图像并使用 SVM 进行分类并输出准确率。 然后它将执行 PCA 以获取 PC。 它将使用 PC 将数据投影到 80 维和 200 维。它将使用 SVM 对这些维数为 80 和 200
2023-01-04 20:42:40 6KB 系统开源
1
使用ResNet对图像进行分类,该代码只需更改分类数和图像路径即可运行,需提前下载ResNet官方训练结果的文件。
2023-01-02 16:27:29 6KB 人工智能 图像分类
1