基于多通道卷积神经网络与变压器振动信号的故障诊断技术研究与应用,基于多通道卷积神经网络与MATLAB仿真的变压器故障诊断技术及其振动信号数据集研究,多通道卷积神经网络 变压器 故障诊断 MATLAB (附赠变压器振动信号数据集) 关键词:卷积神经网络 CNN 多通道卷积 神级网络 MCCNN 变压器 振动信号 故障诊断 内容简介: 卷积神经网络(CNN)的性能与网络结构和卷积核大小密切相关。 通常来说,网络的结构越深,非线性表达能力越强,但也意味着模型更加复杂,需要更多的数据进行训练。 此外,小卷积核能够有效地提取数据的局部特征,而大卷积核则具有较大的感受野,能够有效地提取数据的全局特征。 为了充分发挥CNN的特征提取优势,提高模型的抗干扰性,提出了一种基于多通道卷积神经网络MCCNN的变压器故障类型诊断模型。 注:,。 ,MCCNN;多通道卷积神经网络;变压器;振动信号;故障诊断;网络结构;卷积核大小;抗干扰性,多通道卷积神经网络MCCNN在变压器振动信号故障诊断中的应用
2025-06-23 11:21:24 314KB
1
《泰坦尼克号乘客生存预测:深度解析kaggle数据集》 在机器学习领域,经典的数据集往往能激发无尽的研究与探索。"泰坦尼克乘客生存预测-kaggle-数据集"便是这样一个备受瞩目的案例。这个数据集源自于世界著名的kaggle竞赛,旨在挑战参与者预测在泰坦尼克号沉船事件中,哪些乘客能够幸存。通过分析这个数据集,我们可以深入了解数据预处理、特征工程、模型选择和评估等多个关键环节,同时还能领略到历史事件与现代科技的交织魅力。 我们有两个核心的CSV文件——titanic_train.csv和titanic_test.csv。前者包含了712个样本,用于训练我们的预测模型,每个样本代表一名乘客,记录了他们的基本信息和生存状态。后者则有418个未标记的样本,用于验证模型的性能,其生存情况是我们需要预测的。 在titanic_train.csv中,我们发现以下列名及其对应的知识点: 1. "PassengerId":乘客的唯一标识符,非预测因素。 2. "Survived":目标变量,1表示乘客存活,0表示死亡。 3. "Pclass":乘客的社会阶级(1=头等舱,2=二等舱,3=三等舱),反映了乘客的经济状况和社会地位,是重要的预测特征。 4. "Name":乘客姓名,包含了一些社会信息,但通常不用于预测。 5. "Sex":乘客性别,男性和女性的生存率在历史事件中存在显著差异。 6. "Age":乘客年龄,对于生存概率有直接影响,但数据存在缺失值,需进行填充或处理。 7. "SibSp":乘客的兄弟姐妹和配偶数量,可能影响乘客的生存决策。 8. "Parch":乘客的父母和孩子数量,同上。 9. "Ticket":船票编号,可能蕴含票价信息,但直接使用价值有限。 10. "Fare":乘客的票价,反映了舱位等级和支付能力,是重要的特征。 11. "Cabin":乘客的舱位,部分数据缺失,可提取舱位区域信息。 12. "Embarked":乘客登船港口(C=南安普敦,Q=皇后镇,S= Cherbourg),可能与船票价格、社会阶级等因素有关。 在titanic_test.csv中,除了"Survived"列之外,其他列与训练集相同。我们需要用训练好的模型对这些乘客的生存状态进行预测,并提交结果至kaggle平台,以获得比赛分数。 此外,titanic_gender_submission.csv是一个示例提交文件,其中展示了如何按照乘客ID排列并预测所有测试乘客的生存概率。它通常包含一个全0或全1的"Survived"列,作为初学者的起点。 在这个数据集中,我们可以进行多种特征工程操作,例如创建新特征"FamilySize"(SibSp + Parch + 1)来表示乘客的家庭规模,或者利用Age的中位数或平均数填充缺失值。还可以通过One-hot编码处理分类特征如Sex、Embarked等,使得模型能够理解和处理这些信息。 在模型选择方面,常见的有逻辑回归、决策树、随机森林、支持向量机、梯度提升等。每个模型都有其优势和局限性,需要根据数据特性和问题需求进行选择。通过交叉验证、网格搜索等方式优化模型参数,可以进一步提升预测性能。 总结来说,"泰坦尼克乘客生存预测-kaggle-数据集"不仅是一个机器学习的实践平台,也是理解数据科学流程、特征工程和模型评估的绝佳实例。通过深入挖掘和分析这个数据集,我们不仅可以提高预测能力,还能感受到历史与技术结合的魅力,以及数据分析在解决现实问题中的重要作用。
2025-06-23 10:45:36 33KB 数据集
1
在电力行业维护和监控中,电柜箱门把手作为关键部件,其状态的实时监测对于保障电力系统安全运行至关重要。目标检测技术在自动化监控系统中发挥着重要作用,能够实时识别并定位门把手的存在与状态。当前,随着深度学习技术的飞速发展,目标检测算法尤其是卷积神经网络(CNN)已被广泛应用于各种图像识别任务中。然而,算法训练需要大量的标注数据集作为支撑,因此高质量且领域相关的数据集成为研究与应用的基石。 本数据集的发布,为电力行业特定场景下目标检测任务提供了必要的工具和资源。该数据集包含1167张电力场景下电柜箱门把手的图片,每张图片都经过了精确的标注工作。数据集采用两种流行的目标检测格式——Pascal VOC格式和YOLO格式,提供了相应的标注信息。Pascal VOC格式包括jpg图片文件与对应的xml标注文件,而YOLO格式则包含txt文件,用于标注目标的中心点坐标和宽高信息。 标注过程中采用了labelImg这一广泛使用的标注工具,以矩形框的形式对目标进行标记。每张图片都对应一个xml文件和一个txt文件,分别用于存储VOC格式和YOLO格式的标注数据。标注类别仅有一个,名为"red",这是由于图片场景中电柜箱门把手的特征较为单一,统一归类为"red"。所有标注的矩形框总和为1164个,意味着在1167张图片中,绝大部分都成功标注了目标。 电力场景的特定性意味着这类数据集可能与通用数据集有所区别,场景可能相对单一,但这也是为了保证标注的准确性和一致性。图片示例清晰地展示了如何对电力场景下的电柜箱门把手进行标注,这对数据集的使用者来说具有很好的指导作用。 尽管数据集为电力行业目标检测提供了宝贵的资源,但需要特别强调的是,本数据集不对通过其训练所得的模型或权重文件的精度提供任何形式的保证。数据集的使用者在使用数据集进行模型训练时,需要保持谨慎的态度,对数据集的性质和应用场景有一个清晰的认识。此外,标注图片示例的提供,有助于用户更好地理解和掌握标注规则,以确保数据集在模型训练中发挥最大的效用。 这份数据集是电力行业目标检测研究领域的重要资源,它不仅为相关领域的研究者和工程师提供了大量经过精心标注的高质量图像,还为基于深度学习的目标检测模型训练提供了实践平台。通过使用该数据集,研究人员能够训练出更加精准的检测模型,从而为电力系统的自动化监控和维护贡献力量。同时,本数据集也展现了数据标注的重要性和专业性,为其他领域数据集的创建提供了参考。
2025-06-23 08:52:45 3.67MB 数据集
1
在当今数字化时代,房地产市场作为国民经济的重要组成部分,其动态变化受到广泛关注。二手房市场作为房地产市场的一个重要分支,不仅反映了房地产市场的整体走势,也直接影响着消费者的购房决策。因此,对于二手房市场的研究和分析具有重要的现实意义。本篇文章将围绕二手房数据集的数据采集、分析与数据可视化这一主题展开,详细探讨如何通过技术手段来捕捉二手房市场的关键信息,并利用数据分析与可视化技术来展示和解读这些信息。 数据采集是进行二手房市场分析的基础。在数据采集过程中,主要利用网络爬虫技术来抓取二手房的相关信息。网络爬虫是一种自动获取网页内容的程序或脚本,它能够模拟人类用户在互联网中浏览网页的行为。在本案例中,网络爬虫被设计用来访问各大房地产网站、二手房交易平台上公布的房源信息,包括房源位置、价格、户型、面积、建筑年代、楼层信息、装修情况等多个维度的数据。这些数据通常以文本、图片或表格的形式存在于网页中,爬虫需要通过特定的解析规则来识别并提取出结构化的数据信息。 在完成数据采集之后,数据分析便成为了下一个重要的步骤。数据分析旨在从大量的二手房数据中提取有价值的信息,以便对市场状况进行评估。数据分析的过程涉及数据清洗、数据处理、特征提取和建立分析模型等多个环节。数据清洗是为了去除采集过程中可能出现的重复、错误和不完整的数据,保证数据的质量;数据处理则是将清洗后的数据进行整理和转换,使之符合分析模型的需求;特征提取是从数据中识别出对分析目标有影响的关键特征;分析模型的建立则是利用统计学和机器学习算法来识别数据中的模式和关联性,为市场分析提供依据。 数据可视化是将复杂的数据分析结果以图形化的方式呈现出来,使得非专业人士也能够直观地理解数据分析的结果。在本案例中,使用了pyecharts这一可视化工具来展示分析结果。pyecharts是一个基于Python的数据可视化库,它提供了丰富的图表类型,能够将复杂的数据转化为直观的图表,如柱状图、折线图、散点图、饼图、地图等多种形式,从而帮助分析者更好地解释数据和传达信息。 具体到本数据集,房地产-二手房信息抓取+可视化项目中,数据可视化主要聚焦于展示二手房的价格分布、地域分布、交易活跃度等关键指标。例如,通过柱状图可以展示不同区域二手房价格的分布情况;通过地图可以直观地看到哪些地区的房源更为密集;通过折线图可以分析二手房价格随时间的变化趋势。这些可视化图表不仅为房地产行业的专业人士提供了决策支持,也为普通消费者了解市场提供了便捷的途径。 二手房数据集的数据采集、分析与可视化是一个紧密结合、相互依赖的过程。通过高效的网络爬虫技术进行数据采集,使用先进的数据分析方法进行深度挖掘,最后利用数据可视化技术将分析成果转化为易于理解的信息,这一完整的流程极大地促进了二手房市场的透明化,也为房地产市场的研究者、投资者和政策制定者提供了有力的工具和参考依据。
2025-06-22 21:57:14 8.82MB 数据采集 数据分析 数据可视化
1
数据集被称为"facebook-v-predicting-check-ins-aigc",主要被用于进行数据分析和机器学习任务,尤其是预测用户在特定地点的签到行为。这个数据集来源于Facebook,是原始数据,未经过任何预处理,因此对于研究人员来说,它提供了一个理想的平台来探索和实践数据挖掘与预测模型构建。 我们要了解数据集的构成。根据提供的信息,压缩包内包含两个文件:`train.csv`和`test.csv`。`train.csv`通常是用来训练机器学习模型的数据,而`test.csv`则是用于验证或评估模型性能的独立数据集。这两个CSV文件分别代表了训练集和测试集,它们通常包含一系列特征和相应的目标变量。在本例中,特征可能包括用户的个人信息、地理位置信息、时间戳、社交网络活动等,而目标变量可能是用户是否在某个特定地点进行了签到。 训练集`train.csv`可能包含以下几类信息: 1. 用户ID(User ID):每个用户的唯一标识符,用于跟踪个体行为。 2. 时间戳(Timestamp):用户签到的具体时间,可以用于分析签到的周期性或趋势。 3. 经纬度坐标(Latitude and Longitude):表示签到位置的地理坐标。 4. 地理区域信息(Geographical Area Information):如城市、地区等,用于分析地域特性对签到的影响。 5. 社交网络活动(Social Network Activity):如用户的好友关系、点赞、分享等,这些可能会影响用户签到的行为。 6. 其他可能的特征:如天气、节假日、活动等,这些因素也可能影响用户的签到决策。 测试集`test.csv`通常不包含目标变量(即签到信息),而是包含同样类型的特征,目的是让模型预测这些用户是否会进行签到。 机器学习任务的关键在于选择合适的算法和模型。对于预测签到行为,可以考虑以下模型: 1. 回归模型:如果签到行为被视为连续变量(如签到频率),可以使用线性回归、决策树回归或者随机森林回归等。 2. 分类模型:如果签到行为是二元(签到或不签到),则可以使用逻辑回归、支持向量机(SVM)、随机森林分类或者神经网络。 3. 时间序列分析:考虑到签到行为可能具有时间依赖性,可以使用ARIMA、LSTM(长短期记忆网络)等模型来捕捉时间模式。 在处理这类数据时,还需要关注以下步骤: 1. 数据清洗:检查缺失值、异常值,并进行相应的处理。 2. 特征工程:创建新的特征,比如时间间隔、用户活动频率等,以增强模型的预测能力。 3. 数据标准化/归一化:为了提高模型的训练效率和性能,可能需要对数值特征进行预处理。 4. 模型训练:使用训练集训练选定的模型,并通过交叉验证调整模型参数。 5. 模型评估:用测试集评估模型的预测效果,常见的评估指标有准确率、召回率、F1分数等。 6. 模型优化:根据评估结果进行模型调优,可能涉及特征选择、超参数调整等。 "facebook-v-predicting-check-ins-aigc"数据集为研究者提供了一个深入理解用户签到行为的窗口,通过分析和建模,可以揭示出影响签到的潜在因素,这对于社交媒体平台的个性化推荐、用户行为预测以及商业策略制定都有重要价值。
2025-06-22 21:44:20 659.44MB facebook 数据集
1
100中昆虫的幼虫、成虫图片库,用于机器学习训练或分析。数据已经分好类别。 # 数据表大致如下: 目 科 科代码 属 属代码 有害生物名称 虫害代码 拉丁学名 分布区域 半翅目 C15000000000 蝉科 C15204000000 蚱蝉属 C15204005000 黑蚱蝉 C15204005005 Cryptotympana atrata Fabricius 杨、柳、榆、女贞、竹、苦楝、水杉、悬铃木、桑、三叶橡胶、柚木及多种果树、山楂、樱花、枫杨、苹果 惠山区、滨湖区;赣榆区、连云区;泰兴、靖江;宿迁泗阳、沭阳、宿城区、宿豫区;射阳、盐都、大丰;镇江市;斜桥社区、苏州高新区、吴中区、常熟、昆山、吴江区、太仓;徐州市:云龙区、鼓楼区、泉山区、开发区、丰县、沛县、铜山区、睢宁县、邳州市、新沂市、贾汪区(全市) 、
2025-06-21 17:49:42 292.65MB 数据集 病虫害识别 训练数据集
1
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2025-06-21 16:17:38 42KB 目标检测 yolo
1
无人机视角禁止游泳检测数据集VOC+YOLO格式20604张5类别.docx
2025-06-21 14:07:55 2.07MB 数据集
1
去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集去雨训练数据集
2025-06-20 15:05:29 7KB 图像处理 数据集
1
YOLOv5是一种基于深度学习的目标检测模型,全称为"You Only Look Once"的第五代版本。这个模型在计算机视觉领域广泛应用,特别是在实时目标检测任务中表现出色。VisDrone(Visual Drone Detection)数据集则是专门为无人机视觉检测设计的,包含了大量无人机视角下的人、车和其他物体的标注图像,为研究和训练提供了丰富的素材。 训练YOLOv5模型使用VisDrone数据集,首先需要对数据进行预处理,包括图像的重采样、尺寸调整以及标签的解析。VisDrone数据集中的标注通常采用COCO格式,每个图像文件关联一个json文件,包含各个对象的边界框坐标和类别信息。在训练前,我们需要使用YOLOv5提供的脚本将这些信息转换为模型可识别的格式。 接下来是模型的配置。YOLOv5模型有多个变体,如YOLOv5s、YOLOv5m、YOLOv5l和YOLOv5x,分别对应不同的模型大小和性能。根据计算资源和应用需求,可以选择合适的模型架构。在`config.py`文件中,可以设置学习率、批大小、训练轮数、权重初始化等参数。 开始训练前,需要将VisDrone数据集的图像和标注文件放置在YOLOv5的`data`目录下,并创建对应的配置文件,指定数据集路径、类别的数量等。然后,运行训练命令,例如: ```bash python train.py --cfg yolov5s.yaml --data visdrone.yaml --epochs 300 --weights yolov5s.pt ``` 这里`yolov5s.yaml`是模型配置文件,`visdrone.yaml`是数据集配置文件,`--weights yolov5s.pt`表示使用预训练的YOLOv5s权重启动训练。 在训练过程中,模型会不断迭代优化权重,通过损失函数评估预测框与真实框的匹配程度。YOLOv5使用了多尺度训练(Mosaic数据增强)和在线硬样本挖掘(OHEM)策略,这有助于模型更好地泛化并提高检测性能。 训练完成后,可以通过测试集验证模型的性能,使用`test.py`脚本: ```bash python test.py --cfg yolov5s.yaml --data visdrone.yaml --weights best.pt --img 640 ``` 这将输出模型在测试集上的平均精度(mAP)等指标。 如果需要将模型部署到实际应用,可以使用`export.py`导出ONNX或TensorRT格式的模型,以提高推理速度。同时,`detect.py`脚本可用于实时检测视频或图像。 使用YOLOv5训练VisDrone数据集涉及数据预处理、模型配置、训练、验证和部署等多个环节,整个过程需要深入理解YOLOv5的架构和VisDrone数据集的特点,以便优化模型性能并满足具体应用场景的需求。在实际操作中,可能还需要不断调整参数和策略,以达到最佳效果。
2025-06-20 01:57:58 1014KB 数据集 yolov5
1