计算机操作系统 进程调度模拟实验 课程实验报告
1
实验目的1.理解路由选择算法实现原理,加深对网络层功能的理解; 2.掌握距离向量路由选择算法中路由表形成过程及其对路由选择的影响; 二、实验内容1.熟悉模拟软件的运行环境及操作方法;2、调整参数,分析路由表变化情况,理解路由算法
2019-12-21 21:50:25 1.88MB 网络实验 路由器实验
1
自己写的代码和实验报告,模拟了在批处理系统中的作业调度。适于操作系统初学者理解操作系统中的作业调度原理。(希望朋友们先根据要求自己实现代码,然后再参考我的代码。)
1
【实验目的】 1. 理解死锁的概念; 2. 用高级语言编写和调试一个银行家算法程序,以加深对死锁的理解。 【实验准备】 1. 产生死锁的原因  竞争资源引起的死锁  进程推进顺序不当引起死锁 2.产生死锁的必要条件  互斥条件  请求和保持条件  不剥夺条件  环路等待条件 3.处理死锁的基本方法  预防死锁  避免死锁  检测死锁  解除死锁 【实验内容】 1. 实验原理 银行家算法是从当前状态出发,逐个按安全序列检查各客户中谁能完成其工作,然后假定其完成工作且归还全部贷款,再进而检查下一个能完成工作的客户。如果所有客户都能完成工作,则找到一个安全序列,银行家才是安全的。与预防死锁的几种方法相比较,限制条件少,资源利用程度提高了。缺点:该算法要求客户数保持固定不变,这在多道程序系统中是难以做到的;该算法保证所有客户在有限的时间内得到满足,但实时客户要求快速响应,所以要考虑这个因素;由于要寻找一个安全序列,实际上增加了系统的开销.Banker algorithm 最重要的一点是:保证操作系统的安全状态!这也是操作系统判断是否分配给一个进程资源的标准!那什么是安全状态?举个小例子,进程P 需要申请8个资源(假设都是一样的),已经申请了5个资源,还差3个资源。若这个时候操作系统还剩下2个资源。很显然,这个时候操作系统无论如何都不能再分配资源给进程P了,因为即使全部给了他也不够,还很可能会造成死锁。若这个时候操作系统还有3个资源,无论P这一次申请几个资源,操作系统都可以满足他,因为操作系统可以保证P不死锁,只要他不把剩余的资源分配给别人,进程P就一定能顺利完成任务。 2.实验题目 设计五个进程{P0,P1,P2,P3,P4}共享三类资源{A,B,C}的系统,{A,B,C}的资源数量分别为10,5,7。进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。 3.算法描述 我们引入了两个向量:Resourse(资源总量)、Available(剩余资源量) 以及两个矩阵:Claim(每个进程的最大需求量)、Allocation(已为每个进程分配的数量)。它们共同构成了任一时刻系统对资源的分配状态。 向量模型: R1 R2 R3 矩阵模型: R1 R2 P1 P2 P3 这里,我们设置另外一个矩阵:各个进程尚需资源量(Need),可以看出 Need = Claim – Allocation(每个进程的最大需求量-剩余资源量) 因此,我们可以这样描述银行家算法: 设Request[i]是进程Pi的请求向量。如果Request[i , j]=k,表示Pi需k个Rj类资源。当Pi发出资源请求后,系统按下述步骤进行检查: (1) if (Request[i]<=Need[i]) goto (2); else error(“over request”); (2) if (Request[i]<=Available[i]) goto (3); else wait(); (3) 系统试探性把要求资源分给Pi(类似回溯算法)。并根据分配修改下面数据结构中的值。 剩余资源量:Available[i] = Available[i] – Request[i] ; 已为每个进程分配的数量: Allocation[i] = Allocation[i] + Request[i]; 各个进程尚需资源量:Need[i] = Need[i]-Request[i]; (4) 系统执行安全性检查,检查此次资源分配后,系统是否处于安全状态。若安全,才正式将资源分配给进程以完成此次分配;若不安全,试探方案作废,恢复原资源分配表,让进程Pi等待。 系统所执行的安全性检查算法可描述如下: 设置两个向量:Free、Finish 工作向量Free是一个横向量,表示系统可提供给进程继续运行所需要的各类资源数目,它含有的元素个数等于资源数。执行安全算法开始时,Free = Available .标记向量Finish是一个纵向量,表示进程在此次检查中中是否被满足,使之运行完成,开始时对当前未满足的进程做Finish[i] = false;当有足够资源分配给进程(Need[i]<=Free)时,Finish[i]=true,Pi完成,并释放资源。 (1)从进程集中找一个能满足下述条件的进程Pi ① Finish[i] == false(未定) ② Need[i] <= Free (资源够分) (2)当Pi获得资源后,认为它完成,回收资源: Free = Free
2019-12-21 20:42:01 17KB 银行家算法 操作系统
1
【实验目的】 1. 了解文件系统的原理; 2. 用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。从而对各种文件操作命令的实质内容和执行过程有比较深入的了解。 【实验准备】 1.文件的逻辑结构  顺序文件  索引文件  索引顺序文件  直接文件和哈希文件 2.外存分配方式  连续分配  链接分配  索引分配 【实验内容】 1. 实验要求 要求设计一个 n个用户的文件系统,每次用户可保存m个文件,用户在一次运行中只能打开一个文件,对文件必须设置保护措施,且至少有Create、delete、open、close、read、write等命令。 2. 实验题目  设计一个10个用户的文件系统,每次用户可保存10个文件,一次运行用户可以打开5个文件。  程序采用二级文件目录(即设置主目录[MFD])和用户文件目录(UED)。另外,为打开文件设置了运行文件目录(AFD)。  为了便于实现,对文件的读写作了简化,在执行读写命令时,只需改读写指针,并不进行实际的读写操作。 因系统小,文件目录的检索使用了简单的线性搜索。文件保护简单使用了三位保护码:允许读写执行、对应位为 1,对应位为0,则表示不允许读写、执行。程序中使用的主要设计结构如下:主文件目录和用户文件目录( MFD、UFD)打开文件目录( AFD)(即运行文件目录)。 M D F 用户名 文件目录指针 用户名 文件目录指针 U F D 文件名 保护码 文件长度 文件名 A F D 打开文件名 打开保护码 读写指针
2019-12-21 20:42:01 21KB 文件操作 操作系统实验
1
首先,我们使用加法操作设计一个不检测溢出的乘法操作;完成后,我们对此进行优化,以期获得一个可以对溢出进行检测的乘法操作。
2019-12-21 20:19:16 249KB MIPS64乘法器
1
需要安装eclipse 布置相应的java环境
2019-12-21 20:14:09 2MB aodv路由 模拟仿真
1
操作系统实验完整版(四川大学计算机学院) 包括:“读者与写者问题“,”文件系统模拟实验“,”内存管理问题“,”作业调度系统“,”shell程序”等五个实验的完整源代码及详细实验报告!
1