1.由来: 由google2015年提出,深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层神经网络更加容易和稳定。 2.作用 BN的作用就是将这些输入值或卷积网络的张量进行类似标准化的操作,将其放缩到合适的范围,从而加快训练速度;另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性 3.操作阶段 4.操作流程 计算每一层深度的均值和方差 对每一层设置2个参数,γ和β。假设第1深度γ=2、β=3;第2深度γ=5、β=8。 使用缩放因子γ和移位因子β来执行此操作。 随着训练的进行,这些γ和β也通过反向传播学习以提高准确性。这就要求为每一层学习2个
2021-10-10 20:22:59 252KB 归一化 批量归一化 残差
1
针对医学图像分割中网络深度过深和上下文信息欠缺导致的分割精度降低等问题,提出了一种基于改进U-Net的磁共振成像(MRI)脑肿瘤图像分割算法。该算法通过嵌套残差模块和密集跳跃连接组成一种深度监督网络模型。为了减小编码路径和解码路径特征图之间的语义差距,将U-Net中的跳跃连接改为多类型的密集跳跃连接;为了解决网络过深导致的退化问题,加入残差模块,以防止网络梯度消失。实验结果表明,本算法分割肿瘤整体、肿瘤核心、增强肿瘤的Dice系数分别为0.88、0.84、0.80,满足临床应用的需求。
2021-10-09 16:52:50 7.07MB 图像处理 脑肿瘤分 残差模块 密集跳跃
1
在之前的残差模块中bn的使用在激活函数之后,修改后在激活之前,并且在使用残差模块时一般在其之前会有一个卷积(池化可以有也可没有),在之后会有一个平均池化,这次的测试进行了修改,并且有一定效果
2021-10-07 09:42:50 208.24MB resnet修改 tensorflow
1
RDN 该存储库是。 要求 PyTorch 1.0.0 脾气暴躁的1.15.4 枕头5.4.1 h5py 2.8.0 tqdm 4.30.0 火车 可以从下面的链接下载转换为HDF5的DIV2K,Set5数据集。 数据集 规模 类型 关联 DIV2K 2个 火车 DIV2K 3 火车 DIV2K 4 火车 第5集 2个 评估 第5集 3 评估 第5集 4 评估 否则,您可以使用prepare.py创建自定义数据集。 python train.py --train-file " BLAH_BLAH/DIV2K_x4.h5 " \ --eval-file " BLAH_BLAH/Set5_x4.h5 " \ --outputs-dir " BLAH_BLAH/outputs " \
2021-10-06 20:16:50 3.57MB image-super-resolution Python
1
基于残差改进的灰色模型在电力行业网络安全预测中的应用.pdf
Keras ResNeXt 来自Keras 2.0+中的的论文,ResNeXt模型的实现。 包含用于构建常规ResNeXt模型(针对类似于CIFAR的数据集进行优化)和ResNeXtImageNet(针对ImageNet数据集进行优化)的代码。 显着特征 ResNeXt使用新的扩展块架构更新ResNet块,该架构取决于cardinality参数。 可以从本文的下图中进一步将其可视化。 但是,由于在Keras中不能直接使用分组卷积,因此在此存储库中使用了等效的变体(请参见块2) 用法 对于一般的ResNeXt模型(对于ImageNet以外的所有数据集), from resnext import ResNext model = ResNext(image_shape, depth, cardinality, width, weight_decay) 对于针对ImageNet优化的Res
2021-09-28 09:43:49 498KB Python
1
基于残差神经网络的矿井图像重构方法.pdf
2021-09-25 22:05:40 11.08MB 神经网络 深度学习 机器学习 数据建模
密集连接的注意力金字塔残差网络用于人体姿势估计。
2021-09-25 15:30:51 1.75MB 研究论文
1
keras-resnet:用于深度残差网络的Keras软件包
2021-09-25 08:50:25 40KB theano deep-learning tensorflow keras
1
改进深度残差卷积神经网络的LDCT图像估计_高净植.pdf
2021-09-21 12:00:34 2.2MB 互联网