什么 这是在Unity应用程序中使用经过TensorFlow或ONNX训练的模型进行图像分类和对象检测的示例。 它使用-请注意,梭子鱼仍处于开发预览阶段,并且经常更改。 在我的更多详细信息。 分类结果: 检测结果: 如果您正在寻找类似的示例,但使用TensorflowSharp插件而不是梭子鱼,请参阅我 。 怎么样 您需要Unity 2019.3或更高版本。 2019.2.x版本似乎在WebCamTexture和Vulkan中存在一个错误,导致内存泄漏。 在Unity中打开项目。 从Window -> Package Maanger安装Barracuda 0.4.0-preview
2025-05-16 15:45:26 147.01MB deep-learning unity tensorflow image-classification
1
标题 "使用onnxruntime部署C2PNet图像去雾,包含C++和Python两个版本的程序.zip" 提供了一个关于图像处理和深度学习部署的场景。C2PNet(可能是Clear to see the Past Network)是一种用于图像去雾的深度学习模型,而ONNXRuntime是一个跨平台、高性能的推理引擎,用于运行ONNX(Open Neural Network Exchange)格式的模型。接下来,我们将深入探讨这两个关键概念以及如何在C++和Python中进行集成。 让我们理解C2PNet。C2PNet是一个深度学习网络,设计用于去除图像中的雾霾或雾气,提高图像的清晰度和可读性。这种模型通常基于卷积神经网络(CNN),通过学习从雾天图像到清晰图像的映射来实现去雾效果。它可能包含多个卷积层、池化层、激活函数(如ReLU)以及反卷积层,以恢复图像的细节。 然后,我们来看ONNXRuntime。ONNXRuntime是一个开源项目,由微软开发,用于优化机器学习模型的推理性能。它可以支持多种框架(如TensorFlow、PyTorch、Keras等)生成的ONNX模型,并在不同平台上高效运行。ONNX是一种开放标准,旨在促进模型之间的互操作性,使模型可以跨各种框架和工具进行迁移。 接下来是程序部署的两个版本:C++和Python。C++版程序适合需要高性能和低延迟的应用,例如嵌入式系统或实时处理。Python版则提供了更高的开发灵活性和易用性,适合快速原型设计和测试。 在C++中集成ONNXRuntime,开发者需要: 1. 安装ONNXRuntime库。 2. 加载ONNX模型,这通常涉及创建一个` Ort::Session`对象并提供模型路径。 3. 准备输入数据,确保其符合模型的输入形状和数据类型。 4. 执行推理,调用`Session::Run()`方法。 5. 处理输出结果,提取去雾后的图像。 在Python中,步骤相对简单: 1. 导入onnxruntime库。 2. 创建`onnxruntime.InferenceSession`对象。 3. 使用`run()`方法执行模型,传入输入数据。 4. 获取输出结果,同样处理成去雾后的图像。 标签 "c++ c# c 编程语音" 暗示了程序可能也支持C#,但描述中并未明确提及。如果需要在C#中部署C2PNet,原理与C++类似,只是语法和API会有所不同。 总结来说,这个压缩包提供的资源是一个使用ONNXRuntime部署的C2PNet图像去雾解决方案,包括C++和Python两种实现。用户可以根据自己的需求和环境选择合适的语言进行部署,利用深度学习的力量来改善图像在雾天条件下的视觉效果。
2025-05-16 14:59:42 4.22MB 编程语音
1
数字图像处理是一个涉及到广泛应用领域的技术,它包括图像的获取、处理、分析和理解等过程。随着计算机技术和信息技术的快速发展,数字图像处理技术已经成为现代科学技术中不可或缺的重要组成部分。它不仅在传统的应用领域如医学成像、遥感、军事和安全监控等方面发挥着巨大的作用,而且在新兴的领域,如人工智能、虚拟现实、自动驾驶等高科技领域中也扮演着重要的角色。 Python作为一门简洁易学、功能强大的编程语言,近年来在科学计算和数据分析领域得到了广泛的应用。它的丰富库支持使得数字图像处理变得更加简单和高效。使用Python进行图像处理,不仅可以快速实现各种算法,还能够轻松集成机器学习、深度学习等先进技术和方法,为处理复杂的图像问题提供强大的支持。 在数字图像处理中,常用的方法和技术包括图像的几何变换、图像增强、图像复原、图像分割、特征提取、图像识别、图像压缩等。这些技术的应用可以有效地改善图像质量,提取图像中的有用信息,或者实现对图像内容的智能识别。 例如,在图像几何变换中,可以通过仿射变换实现图像的平移、旋转、缩放等操作,这对于图像对齐和图像注册具有重要意义。图像增强技术能够改善图像的视觉效果,提高图像的对比度和清晰度,常用的图像增强方法有直方图均衡化、滤波处理等。图像复原则是解决图像退化问题的方法,通过数学模型恢复图像到更加接近原始状态的过程,这在去除噪声和图像重建方面十分关键。 图像分割技术旨在将图像中的感兴趣区域与背景或其他区域分离,这是图像分析和理解的基础步骤。特征提取是从图像中提取有意义的信息的过程,这些特征可以是颜色、纹理、形状等,它们是图像识别和分类的重要依据。图像识别则是通过算法对提取的特征进行分析,识别出图像中所包含的物体、场景或模式。 图像压缩技术能够在不损失过多信息的前提下,减少图像数据的存储空间和传输时间,这对于网络图像传输和存储具有重要的意义。常见的图像压缩方法有有损压缩和无损压缩,其中JPEG、PNG和GIF是常见的图像文件格式。 在本书《数字图像处理与python实现》中,将系统地介绍数字图像处理的基本概念、理论和技术,并结合Python编程语言,展示如何实现上述各种图像处理技术。通过实例代码的讲解,读者可以学习到如何使用Python的图像处理库(如PIL/Pillow、OpenCV、NumPy等)来处理和分析图像数据,从而为解决实际问题提供可行的技术方案。 本书适合对数字图像处理感兴趣的读者,包括但不限于计算机科学与技术专业的学生、研究人员以及工程师。无论是数字图像处理的初学者,还是希望将Python应用于图像处理领域的专业人员,都能够从本书中获得宝贵的知识和实践经验。 本书将会从数字图像处理的基础知识讲起,逐步深入到高级主题,每一章都会结合具体的编程示例,帮助读者加深理解。此外,本书还将介绍一些高级话题,如图像处理在机器学习中的应用,以及如何利用深度学习框架(如TensorFlow、PyTorch)进行图像的智能识别和分析。通过阅读本书,读者将能够掌握数字图像处理的核心技术和应用技巧,为自己的研究和开发工作打下坚实的基础。
2025-05-16 13:44:39 231KB 图像处理 python
1
提出了一种适用于我国东南沿海的、简单有效的云检测算法,该算法能够实现对MODIS白天图像的自动云检测。对检测结果进行准确性估计表明,总体的云像元检测精度和无云像元检测精度均达到95%以上。
2025-05-15 20:25:49 1.01MB 工程技术 论文
1
在图像处理领域,16位图像读取和保存是一个重要的环节,特别是在高精度色彩管理和科学数据分析中。16位图像可以提供比8位图像更丰富的色彩层次和精度,因为每个像素值可以有65536(2^16)种可能的值,而8位图像只有256种。在本主题中,我们将深入探讨如何使用OpenCV库进行16位图像的读取和保存,并特别关注"Log灰度变换"这一图像处理技术。 OpenCV是一个强大的开源计算机视觉库,它支持多种图像格式,包括16位的.tiff文件。在OpenCV中,我们通常使用imread函数来读取图像,imsave函数来保存图像。对于16位图像,我们需要确保设置正确的参数,以避免数据丢失或不正确的解码。 读取16位图像时,我们可以使用以下代码: ```python import cv2 # 使用'16'标志读取16位图像 image = cv2.imread('16bit_image.tiff', cv2.IMREAD_UNCHANGED) ``` 这里的cv2.IMREAD_UNCHANGED标志告诉OpenCV保留图像的原始位深度,包括16位图像。 保存16位图像同样需要注意,要确保数据完整无损: ```python # 使用'16'标志保存为16位.tiff cv2.imwrite('output.tiff', image, [cv2.IMWRITE_TIFF_COMPRESSION, 'none']) ``` 这里,我们使用了IMWRITE_TIFF_COMPRESSION选项,设为'none'以避免压缩导致的数据损失。 接下来,我们转向“Log灰度变换”。这种变换是一种非线性操作,常用于增强图像的对比度,特别是当图像的大部分像素值集中在低亮度区域时。Log变换的基本公式是: \[ L = c \cdot \log(1 + I) \] 其中,\( L \) 是转换后的灰度值,\( I \) 是原图像的灰度值,\( c \) 是一个常数,用于调整变换的尺度。这个变换可以使低灰度值部分的差异变得更大,从而提升图像的可读性。 在OpenCV中实现Log变换可以这样写: ```python def log_transform(image, c=1): return c * np.log1p(image) # 应用Log变换 transformed_image = log_transform(image) ``` 我们提到的logtrans.PNG、logimg.PNG和main.PNG可能是这个过程中的示例图像。logtrans.PNG可能展示了经过Log变换后的图像效果,logimg.PNG可能显示的是原始16位图像,而main.PNG可能是一个包含整个处理流程的主视图或结果比较。 16位图像读取和保存是高精度图像处理的基础,而Log灰度变换则是一种有效的图像增强方法。使用OpenCV,我们可以方便地完成这些操作,以适应各种视觉分析和处理任务。
2025-05-14 22:18:15 16KB opencv 图像保存 16位图像
1
内容概要:本文详细介绍了利用MATLAB对血细胞图像进行处理的完整流程,包括去噪、增强、二值化以及形态学分割。首先,采用中值滤波去除图像中的椒盐噪声并保持细胞边缘清晰;接着,通过自适应直方图均衡化增强图像对比度;然后,应用Otsu法确定全局阈值并适当调整以实现二值化;最后,利用形态学操作(如开运算、填充孔洞)将血细胞分割为独立的连通域,并对其进行标记和计数。整个过程不仅展示了具体的MATLAB代码实现,还提供了实用的操作技巧和注意事项。 适合人群:从事医学图像处理的研究人员和技术人员,尤其是对血细胞图像分析感兴趣的初学者。 使用场景及目标:适用于需要对血细胞图像进行预处理和特征提取的应用场合,如血液病诊断辅助系统。目标是提高图像质量,便于后续的定量分析和识别。 阅读建议:读者可以跟随文中提供的步骤,在自己的环境中重现实验结果,同时注意作者提到的一些常见错误及其解决方案。
2025-05-14 21:56:32 7.63MB
1
本代码可以用于显示高维医学图像,且是img或mat等格式
2025-05-14 19:36:03 687B matlab 显示图像
1
libyuv 是一个开源项目,专为处理 YUV 格式的图像转换而设计。YUV 是一种色彩编码系统,常用于视频捕捉、电视广播以及显示设备中。在计算机领域,尤其是在处理视频流和图像处理时,YUV 格式因其能够分离亮度信息(Y)与色度信息(UV)的优点而被广泛使用。与RGB格式相比,YUV 格式的一个重要优势是它允许仅对亮度信息进行操作,这在许多图像处理任务中非常有用,如降低亮度以减少数据量,而不显著影响图像质量。 libyuv 的主要功能是提供一系列的函数,用于将 YUV 图像数据转换为其他格式,或者将其他格式转换为 YUV。这对于编解码器来说尤为重要,因为大多数视频编码标准都是基于 YUV 或类似的色彩空间。例如,当视频播放器需要将从压缩视频流中解码的 YUV 数据显示在屏幕上时,可能需要将其转换为适合屏幕显示的 RGB 格式。 在多平台支持方面,libyuv 包括了针对不同 CPU 架构优化的版本。例如,armeabi-v7a 是为 ARMv7 架构的处理器设计的,arm64-v8a 是针对支持 ARMv8-A 架构的处理器的,而 x86_64 和 x86 分别对应于 x86 架构的 64 位和 32 位版本。这种多平台支持意味着开发者可以在不同的硬件和操作系统上使用 libyuv,从而实现更广泛的覆盖和兼容性。 为了方便开发者使用,libyuv 还提供了接口封装,例如在 Java 中使用的 YuvUtils.java 文件。该文件提供了一种封装好的接口,允许 Java 程序员调用 libyuv 的功能进行 YUV 图像的处理。这使得在 Android 开发中处理视频数据更为简便,因为 Android 应用主要是用 Java 语言编写的。 libyuv 的广泛应用包括但不限于视频会议应用、视频监控系统、图像处理软件以及移动平台和桌面平台上的视频播放器和编辑器。开发者可以利用 libyuv 来提高这些应用的性能,尤其是在涉及大量图像处理和格式转换的场景下。 libyuv 作为一个专门针对 YUV 图像转换的库,通过提供高效的算法和多平台支持,为处理视频和图像的软件开发者提供了极大的便利。无论是专业的视频编辑软件,还是简单的视频播放应用,libyuv 都是一个有价值的工具,能够帮助开发者实现更加丰富和高效的图像处理功能。
2025-05-14 10:51:37 4.24MB
1
这段代码实现了一个基于卷积神经网络(CNN)的糖尿病预测模型,使用PyTorch框架进行训练和评估。代码首先导入必要的库,包括matplotlib用于可视化、numpy和pandas用于数据处理、torch用于深度学习框架搭建,以及sklearn的KFold用于交叉验证。数据从'diabetes.csv'文件中读取,特征和标签分别存储在X和y中,并转换为PyTorch张量。模型的核心是DiabetesCNN类,这是一个1D卷积神经网络,包含两个卷积层(分别使用16和32个滤波器,核大小为3)、最大池化层(核大小为2)、两个全连接层(64和2个神经元)以及ReLU激活函数和Dropout层(0.2的丢弃率)用于防止过拟合。模型的前向传播过程依次通过卷积、池化、展平和全连接层,最终输出二分类结果。 训练过程采用5折交叉验证来评估模型性能,每折训练50个epoch,批量大小为32。训练过程中记录了每个epoch的训练和验证损失及准确率,并保存最佳验证准确率。优化器使用Adam,学习率设为0.001,损失函数为交叉熵损失。训练结束后,代码绘制了训练和验证的损失及准确率曲线,展示模型在不同折上的表现,并计算平均准确率和标准差。结果显示模型在交叉验证中的平均性能,为评估提供了可靠依据。 最后,代码在所有数据上训练最终模型,保存模型参数到'diabetes_cnn_model_final.pth'文件。整个流程展示了从数据加载、模型构建、训练评估到最终模型保存的完整机器学习流程,突出了交叉验证在模型评估中的重要性,以及CNN在结构化数据分类任务中的应用潜力。通过可视化训练曲线,可以直观地观察模型的学习过程和泛化能力,为后续调优提供参考。该实现充分利用了PyTorch的灵活性和GPU加速(如果可用),确保了高效训练。
2025-05-13 13:06:51 352KB
1
内容概要:本文详细介绍了如何利用OpenCVSharp库进行金属板材平整度检测的方法和技术细节。首先,通过角点检测算法(如Shi-Tomasi和Harris)识别金属板表面的特征点,特别是那些由于变形而产生的不规则突变点。接着,通过对角点分布的统计分析,如计算方差和凸包周长,来量化表面平整度。此外,针对反光严重的问题,提出了预处理步骤,如高斯模糊和平滑处理,以及CLAHE直方图均衡化,以提高检测准确性。文中还讨论了参数选择的经验法则及其对结果的影响。 适合人群:从事工业自动化、机器视觉领域的工程师和技术人员,尤其是对图像处理和质量检测感兴趣的开发者。 使用场景及目标:适用于工厂生产线上的金属板材质量检测,能够快速筛查出存在明显缺陷的产品,减少人工检测的工作量并提高检测效率。主要目标是在保证一定精度的前提下,提供一种高效、可靠的自动化检测手段。 其他说明:虽然该方法对于一般工业应用场景已经足够精确,但对于航空航天等超高精度要求的场合,则推荐采用更加先进的检测设备如激光扫描仪。同时,在实际部署过程中需要注意不同光照条件下的参数调整,确保系统的鲁棒性和稳定性。
2025-05-12 23:02:39 348KB 角点检测 图像处理 预处理技术
1