基于Matlab的无线充电仿真:LCC谐振器与不同拓扑的磁耦合谐振无线电能传输系统解析与建模,无线充电仿真 simulink 磁耦合谐振 无线电能传输 MCR WPT lcc ss llc拓扑补偿 基于matlab 一共四套模型: 1.llc谐振器实现12 24V恒压输出 带调频闭环控制 附参考和讲解视频 2.lcc-s拓扑磁耦合谐振实现恒压输出 附设计过程和介绍 3.lcc-p拓扑磁耦合谐振实现恒流输出 附设计过程 4.s-s拓扑补偿 带原理分析,仿真搭建讲解和参考,可依据讲解自行修改参数建模 四套打包 ,关键词:无线充电仿真;Simulink;磁耦合谐振;无线电能传输(WPT);MCR;LLC谐振器;LCC-S拓扑;LCC-P拓扑;调频闭环控制;设计过程;恒压输出;恒流输出;s-s拓扑补偿;Matlab。,基于Matlab的无线充电仿真模型:多拓扑磁耦合谐振无线电能传输系统研究
2025-09-27 13:53:52 352KB 开发语言
1
基于GasTurb软件的涡桨与涡扇发动机性能对比:推力、NOx排放与不同温度高度差异分析,基于GasTurb软件的涡桨与涡扇发动机性能对比:推力、NOx排放与不同温度差异分析,【基于GasTurb的不同构型发动机性能对比】 GasTurb软件 1、涡桨、涡扇发动机等构型 2、在一样的推力需求下对比NOx排放差异 3、在不同的delta_T和高度下对比性能差异 ,基于GasTurb的不同构型发动机性能对比;涡桨涡扇发动机构型;NOx排放差异;delta_T与高度对性能的影响。,基于GasTurb的发动机构型性能对比:涡桨涡扇NOx排放与高度性能差异研究
2025-09-22 21:08:37 1.37MB
1
分别采用线性回归(Linear Regression, LR)、卡尔曼滤波器(Kalman Filter, KF)、DNN以及LSTM 进行解码性能比较。其中LR和KF在x、y两个不同方向的位置预测上比其他两个神经网络更精准,后者波动明显较大;但前者在速度和加速度的预测上明显弱于神经网络,后者可以捕捉到速度和加速度较大的波动,当然也正是因为这个原因导致后者预测的位置曲线出现了很多意料之外的毛刺。 猕猴Spike运动解码是一个涉及生物信号处理和机器学习技术的前沿研究领域。在这个领域中,科学家们致力于从猕猴的神经元活动中提取运动信息,以期理解大脑是如何控制运动的,并且希望这些技术能应用于神经假肢或其他神经科学应用中。为了解码猕猴运动相关的神经信号,即Spike信号,研究者们已经尝试了多种解码算法,其中包括线性回归(Linear Regression, LR)、卡尔曼滤波器(Kalman Filter, KF)、深度神经网络(DNN)以及长短期记忆网络(LSTM)。 线性回归是一种简单的统计方法,它通过寻找输入变量与目标变量之间最佳的线性关系来预测结果。在运动解码中,线性回归能够较好地在二维空间中预测出位置坐标,尤其是在解码小范围内平滑的运动轨迹时表现优秀。然而,当运动涉及速度和加速度的变化时,线性回归的表现就显得力不从心。 卡尔曼滤波器是一种有效的递归滤波器,它能够通过预测和更新过程来估计线性动态系统的状态。在处理猕猴Spike信号时,卡尔曼滤波器同样在位置预测方面有着不错的表现。和线性回归类似,卡尔曼滤波器在预测运动的速度和加速度时可能会丢失一些重要信息,这可能导致在复杂运动的解码中出现误差。 深度神经网络(DNN)和长短期记忆网络(LSTM)作为两种神经网络模型,在处理非线性和复杂的时间序列数据方面展现出了巨大的潜力。在Spike信号的运动解码中,这两种网络能够捕捉到运动过程中速度和加速度的波动,这使得它们在预测运动轨迹时能够更好地反映真实情况。不过,由于神经网络模型的复杂性,它们可能会在预测过程中引入一些不必要的波动,这些波动在预测曲线中表现为毛刺。 在对比这四种解码方法时,研究者们发现,线性回归和卡尔曼滤波器在处理位置坐标预测时相对更为稳定和精确,而在速度和加速度预测上,神经网络具有明显的优势。不过,神经网络在速度和加速度的预测中虽然能够捕捉到快速变化的信息,但也容易导致位置预测中出现不稳定的波动。因此,在实际应用中选择合适的解码算法需要根据具体需求和条件来定。 在实践这些算法时,研究者通常会使用Python编程语言,它提供了丰富的机器学习库和框架,如TensorFlow、Keras和PyTorch等,这些工具简化了从数据预处理到模型训练和评估的整个流程。Python语言的易用性和强大的社区支持使其成为了研究者进行算法开发和实验的首选工具。 运动解码是一个跨学科的研究领域,它将神经科学、机器学习、信号处理以及计算机科学等领域结合起来,旨在从生物信号中提取信息,以期能够更好地理解和应用大脑的运动控制机制。随着技术的不断进步,这些方法将会在脑机接口、神经假肢、康复治疗等领域发挥更加重要的作用。
2025-09-22 10:25:31 15KB python 神经网络
1
内容索引:VB源码,系统相关,分辨率  VB让程序窗口运行在不同分辨率下,程序主要是利用DirectX对象,声明DirectX对象,在列表框中显示各种显示模式的宽度、高度、色彩深度、刷新率,并为各显示模式编号,鼠标双击任一模式,会改变屏幕分辨率。
2025-09-11 23:19:25 2KB VB源代码 系统相关
1
### VB6实现不同分辨率下控件大小的自动调整 在Visual Basic 6(简称VB6)开发环境中,针对不同分辨率下的界面自适应是一项常见的需求。本文将详细介绍如何通过VB6编程来实现不同分辨率下控件大小的自动改变,确保用户界面在不同屏幕尺寸和分辨率上都能保持良好的显示效果。 #### 一、问题背景 随着显示器技术的发展,用户使用的屏幕分辨率种类越来越多。为了保证应用程序的用户体验,开发者需要确保其设计的用户界面能够根据不同的分辨率进行相应的调整。在VB6中,这通常涉及到对窗口和控件的位置及大小进行动态调整。 #### 二、解决方案概述 为了解决这一问题,可以采用记录控件原始位置和大小的方法,并在窗体加载或窗口大小发生变化时,按照一定的比例调整控件的位置和大小。下面将详细介绍具体的实现步骤和技术细节。 #### 三、关键技术点 1. **记录控件位置与大小**: - 定义一个`ControlPlaces`类型,用于存储每个控件的原始位置和大小。 - 在窗体加载时(`Form_Load`事件),使用`ReDim`语句动态分配内存来存储所有控件的信息。 - 遍历窗体上的所有控件,记录每个控件的位置和大小。 2. **窗体大小变化时的处理**: - 在窗体大小发生变化时(`Form_Resize`事件),计算当前窗体宽度和高度与原始宽度和高度的比例。 - 根据比例调整每个控件的位置和大小。 3. **实现代码详解**: ```vb Private Type ControlPlaces Contrl As Control Left As Single Top As Single Width As Single Height As Single End Type Dim CtrlPos() As ControlPlaces Private Sub Form_Load() ReloadPos End Sub Sub ReloadPos() ReDim CtrlPos(Me.Controls.Count) Dim Ctrl As Control Dim Num As Long For Each Ctrl In Me.Controls Set CtrlPos(Num).Contrl = Ctrl CtrlPos(Num).Left = Ctrl.Left CtrlPos(Num).Top = Ctrl.Top CtrlPos(Num).Width = Ctrl.Width CtrlPos(Num).Height = Ctrl.Height Num = Num + 1 Next CtrlPos(UBound(CtrlPos)).Left = Me.Left CtrlPos(UBound(CtrlPos)).Top = Me.Top CtrlPos(UBound(CtrlPos)).Width = Me.Width CtrlPos(UBound(CtrlPos)).Height = Me.Height End Sub Private Sub Form_Resize() WChng = Me.Width / CtrlPos(UBound(CtrlPos)).Width HChng = Me.Height / CtrlPos(UBound(CtrlPos)).Height For x = 0 To UBound(CtrlPos) - 1 CtrlPos(x).Contrl.Left = CtrlPos(x).Left * WChng CtrlPos(x).Contrl.Top = CtrlPos(x).Top * HChng CtrlPos(x).Contrl.Width = CtrlPos(x).Width * WChng CtrlPos(x).Contrl.Height = CtrlPos(x).Height * HChng Next End Sub ``` #### 四、注意事项 - **性能考虑**:当窗体中的控件数量较多时,每次调整大小都会重新计算并设置每个控件的位置和大小,可能会导致性能下降。此时可以考虑使用其他技术,如缓存最近使用的比例等方法来优化性能。 - **边界检测**:在某些情况下,调整后的控件可能会超出窗体的范围。因此,在调整控件位置和大小时,需要增加边界检测逻辑,防止控件显示不完整。 - **兼容性问题**:在不同的操作系统版本和显示设置下,控件的实际显示效果可能略有差异。在实际应用中,需要进行充分的测试以确保兼容性。 #### 五、总结 通过以上介绍可以看出,使用VB6实现不同分辨率下控件大小的自动调整是完全可行的。这种方法不仅可以提高应用程序的可用性,还能提升用户的使用体验。开发者可以根据自己的具体需求,灵活调整上述方案,以满足更复杂的场景需求。
1
Comsol电磁波模型下的金属超表面光栅:基于TE与TM偏振斜入射时的多级衍射与反射光谱计算研究。,Comsol电磁波模型下的金属超表面光栅:探究TE TM偏振斜入射时不同衍射级反射光谱的精细计算。,Comsol电磁波模型:金属超表面光栅,TE TM偏振下斜入射不同衍射级反射光谱计算。 ,关键词:Comsol电磁波模型;金属超表面光栅;TE TM偏振;斜入射;衍射级反射光谱计算。,Comsol电磁波模型:超表面光栅衍射反射光谱计算 本文研究了在Comsol电磁波模型中,金属超表面光栅在TE和TM偏振斜入射下的多级衍射与反射光谱的计算方法。通过构建相应的电磁波模型,分析了在特定偏振条件下,光波斜入射到金属超表面光栅时产生的多级衍射效应,以及这些衍射级对应的反射光谱特性。 金属超表面光栅是一种人造微结构材料,能够通过衍射作用引导电磁波,并具有与传统光学元件不同的光学性能。在TE(电场垂直于入射平面)和TM(磁场垂直于入射平面)偏振状态下,斜入射的光波会产生复杂的衍射现象,不同衍射级的反射光谱对整体的反射特性有着显著的影响。精确计算这些衍射级的反射光谱,对于设计和优化金属超表面光栅在光学器件中的应用至关重要。 在研究中,首先需要建立精确的物理模型,并通过Comsol软件进行仿真计算。这涉及到电磁波理论、偏振光学、衍射理论等多学科知识。通过仿真可以得到不同偏振条件下,光波斜入射到金属超表面光栅后的场分布、衍射效率和反射光谱等参数。这些参数能够帮助理解光栅对入射光波的调控机制,为设计特定功能的光栅提供理论支持。 该研究还涉及到了对不同衍射级的精细计算,这是因为每一个衍射级都对应着一种特定的衍射模式,从而影响整个光栅的光学特性。因此,对于每一级衍射的研究都是不可或缺的。计算结果对于设计具有特定反射特性的光栅,如宽带反射器、光束分裂器等光学元件具有重要参考价值。 通过深入分析和计算,本文为金属超表面光栅的设计提供了理论基础,尤其是在微纳光学、光学传感和高效率光学器件设计领域具有潜在的应用价值。这些理论和技术不仅丰富了光学领域的研究,也为实际应用提供了新的思路和方法。 关键词:Comsol电磁波模型、金属超表面光栅、TE和TM偏振、斜入射、衍射级反射光谱计算。
2025-09-08 17:30:50 386KB gulp
1
"Comsol电磁波模型解析:金属超表面光栅TE TM偏振斜入射的衍射级反射光谱研究",Comsol电磁波模型:金属超表面光栅,TE TM偏振下斜入射不同衍射级反射光谱计算。 ,核心关键词:Comsol电磁波模型; 金属超表面光栅; TE偏振; TM偏振; 斜入射; 衍射级反射光谱计算; 计算结果。,Comsol光栅电磁波模型:超表面衍射级反射光谱计算 在现代科学研究领域,电磁波模型的应用非常广泛,尤其是在电磁波传播、衍射计算以及光电设备设计中。Comsol多物理场仿真软件,作为一种强大的工具,可以帮助研究人员模拟和分析电磁波在不同介质和结构中的行为。本文档主要探讨了使用Comsol电磁波模型解析金属超表面光栅在TE(横电)和TM(横磁)偏振光斜入射条件下,不同衍射级的反射光谱特性。 金属超表面光栅作为一种具有周期性结构的材料,其在光学和电磁学领域具有特殊的应用价值。通过改变金属超表面的结构参数,如周期、深度、形状等,可以调控光波的反射、透射和吸收特性。在电磁波模型中,准确模拟这些参数对于理解光栅的行为至关重要。 TE偏振和TM偏振是指入射电磁波电场方向分别垂直和平行于入射面。在斜入射条件下,电磁波与光栅相互作用,产生衍射现象,不同衍射级的光波会有不同的反射方向和强度。因此,研究不同偏振状态下斜入射光栅的衍射特性对于优化光电设备性能具有重要意义。 在进行仿真计算时,研究人员需设定适当的边界条件和材料参数,以确保仿真结果的准确性。例如,金属的电导率、介电常数等参数的选择需要根据实验数据或文献资料进行。此外,计算模型的网格划分、求解器的选择以及后处理分析也是至关重要的环节。 本文档提及的“计算结果”可能涉及了多种仿真分析,包括但不限于反射率、透射率、场分布、相位分布等。这些数据能够帮助研究者深入理解光栅的电磁特性,并为实验验证提供理论基础。 同时,文档中的图片文件(如5.jpg、7.jpg、3.jpg、4.jpg、2.jpg)可能展示了仿真的电磁场分布图、反射和透射光谱曲线等,这些视觉信息有助于直观理解仿真结果,并辅助研究人员进行分析和解释。 值得注意的是,本研究的标签为“大数据”,这可能意味着研究过程中产生了大量数据,需要使用大数据处理方法来分析和处理这些数据,以便更好地理解光栅行为和优化设计。 本文档的讨论不仅局限于理论研究,还可能涉及到应用层面的探索。金属超表面光栅的研究有助于开发新型的光学器件,如光谱仪、偏振器、滤波器等,这些应用在光学通信、成像系统、太阳能电池等领域有着广泛的应用前景。 本文档内容涵盖了Comsol电磁波模型在金属超表面光栅中的应用,分析了TE和TM偏振下斜入射光栅的衍射级反射光谱计算,为光电材料的设计和优化提供了理论支持,并且在大数据处理方面展现了其潜在的应用价值。
2025-09-08 17:30:21 3.79MB
1
这是一个超声波在不同材质表面反射产生的回波数据集。 使用HC-SR04超声波传感器采集数据,超声波频率约为40kHz。使用STM32F1进行ADC,12位精度,600kHz采样率。数据文件格式为csv,每个csv文件含有4096个数据点。 本数据集包括金属、发泡纸、纸巾、织物、硬纸板五种不同材质。在采集时材质距离超声波传感器约15cm。 超声波是一种频率高于人耳所能听到的最高阈值(约为20kHz)的声波,因其具有良好的穿透性和反射性,在材料检测、医疗成像、距离测量等领域有广泛的应用。本数据集主要关注超声波在不同材质表面反射后产生的回波特性,特别是使用HC-SR04超声波传感器采集数据,并采用STM32F1微控制器的模数转换器(ADC)进行处理,最终形成一系列的csv格式数据文件。 HC-SR04是一款常用的超声波测距传感器模块,它可以发射40kHz的超声波脉冲,并接收被物体反射回来的回波,通过测量发射脉冲和接收回波之间的时间差来计算距离。在本数据集中,HC-SR04超声波传感器被用于获取不同材质表面反射超声波的特性数据。 STM32F1系列是ST公司生产的一款高性能32位ARM Cortex-M3微控制器,具备丰富的外设接口和较高的运行速度,非常适合处理高速模拟信号。在本数据集中,STM32F1微控制器的ADC模块被设置为12位精度和600kHz采样率,确保超声波反射信号能够被准确且精细地数字化。这种高精度的数据采集对于后续的数据分析和材质特性研究至关重要。 数据集中的每个csv文件包含了4096个数据点,这些数据点详细记录了超声波回波的幅度和时间信息,反映了不同材质表面对于超声波的反射能力。材质的物理性质如密度、硬度、表面粗糙度等都可能影响回波的特性,因此本数据集能够为研究不同材料的声学特性提供重要参考。 本数据集涵盖了五种不同的材质,包括金属、发泡纸、纸巾、织物和硬纸板。每种材质由于其独特的物理结构,对超声波的吸收和反射特性都会有所差异。例如,金属由于其良好的声导性,可能会产生较强的反射信号;而纸巾和织物等柔软材料,由于其多孔性和松散结构,可能会吸收更多的声波能量,导致回波较弱。硬纸板作为介于金属和软质材料之间的材质,其反射特性将介于两者之间。 在数据采集的过程中,传感器与材质之间的距离被固定在大约15厘米,这是一个相对较小的距离,可以减少环境因素对超声波传播的影响,从而提高数据的准确度。同时,由于超声波在空气中的传播速度是已知的(大约为343m/s),因此可以使用声波传播时间来反推材质表面与传感器之间的距离。 本数据集不仅适用于材料科学研究,还可以在工业自动化、机器人导航、质量检测等领域发挥作用。通过分析不同材质对超声波的回波特性,可以开发出更高效的材料识别技术,以及改进现有的超声波检测和成像设备。此外,数据集对于教育和培训领域也有一定的价值,可以作为教学案例来讲解超声波技术的原理和应用。 这份数据集为研究超声波在不同材质表面的反射特性提供了一套详细的数据支持,对于推动声学检测技术的发展,改善超声波传感器的应用效果具有重要的意义。通过对数据的深入分析,有助于更好地理解和应用超声波技术,为相关领域提供理论依据和技术支持。
2025-09-04 16:10:55 34.7MB stm32 数据集
1
本文档介绍了基于YOLOv11模型的安全帽检测系统的开发,旨在识别各种颜色的安全帽。文中涵盖了使用ONNX格式的模型、Tkinter制作的用户界面以及一系列辅助功能如数据增强的方法、置信度调整等细节,并提供了从环境搭建到最终实现的整体指导和代码示例。此外还涉及系统未来的改进步骤。该系统不仅具备良好的鲁棒性和实用性,并且具有很强的灵活性和扩展性。 适合人群:具有基本编程背景并对机器学习尤其是计算机视觉感兴趣的研究人员和从业者。 使用场景及目标:适用于工地上各类环境中对工作人员佩戴情况的有效监测,旨在提高施工场所的安全管理效能;同时也适用于研究人员学习YOLOv11及相关检测技术。 其它:系统在未来有望发展成为实时监控系统,并支持多任务处理,进一步增加其实用价值。
2025-08-26 15:15:03 38KB 深度学习 Tkinter 安全帽检测 ONNX
1
COMSOL模拟分析:不同催化剂结构对二氧化碳电化学还原过程中离子传输的影响,COMSOL模拟分析:不同催化剂结构对二氧化碳电化学还原过程中离子传输的影响与优化,在COMSOL中二氧化碳电化学还原过程中不同催化剂结构对离子传输的影响的模拟分析 ,核心关键词:COMSOL模拟;二氧化碳电化学还原;催化剂结构;离子传输影响;模拟分析; 以上关键词以分号分隔的形式为一行:COMSOL模拟; 二氧化碳电化学还原; 催化剂结构; 离子传输影响; 模拟分析;,COMSOL模拟:不同催化剂结构对CO2电化学还原离子传输影响的分析
2025-08-18 11:21:17 886KB xhtml
1