针对Retinex算法在去雾时会出现光照不均匀、彩色失真等情况,提出了一种基于低照度的有雾彩色图像增强算法。该算法首先将红-绿-蓝(RGB)图像转换到色调-饱和度-亮度(HSV)空间区域,对亮度(V)分量进行提取,将单尺度Retinex算法作用于V分量后对V分量进行伽马校正;将MSRCR 算法中的高斯滤波器改为引导滤波并进行低通滤波;最后将改进的SSR算法、MSRCR算法、基于拉普拉斯金字塔的Retinex算法得到的图像进行加权融合。该算法能够得到很好的去雾效果,有效地抑制光晕并改善色彩失真等问题。经所提算法处理后,图片的相似性、信息熵等指标均得到了提升。
2022-04-27 14:55:12 3.89MB 图像处理 图像增强 有雾图像 Retinex算
1
在MSR图像增强算法的基础上进行了改进,采用RGB与HSV颜色空间的快速转换算法,并在MSR算法中用快速均值滤波代替高斯模板卷积,提高算法运算速度;对增强后的图像采用自动截断式对比度拉伸方法,提高增强后图像的对比度。实验结果表明,本算法在提高图像质量的同时,算法速度提高3~4倍。
2022-04-21 20:50:59 439KB 数码影像
1
针对低照度条件下图像对比度不高、颜色失衡和存在噪声等问题,提出了一种基于多分支全卷积神经网络(MBACNN)的低照度图像增强模型。该模型是一个端到端的模型,包含特征提取模块(FEM)、增强模块(EM)、融合模块(FM)和噪声提取模块(NEM)。通过对合成的低照度和高清图像样本进行训练,根据验证集的损失值不断调整模型参数,以得到最优模型;然后对合成低照度图像和真实低照度图像进行测试。实验结果表明,与传统的图像增强算法相比,所提出的模型能够有效提高图像对比度、调整颜色失衡并去除噪声,主观视觉和客观图像质量评价指标都得到进一步改善。
2022-04-06 19:58:02 13.79MB 图像处理 卷积神经 特征融合 低照度图
1
针对低照度条件下图像降质严重的问题, 提出了一种基于深度卷积神经网络(DCNN)的低照度图像增强算法。该算法根据Retinex模型合成训练样本, 将原始低照度图像从RGB (Red Green Blue)空间转换到HSI (Hue Saturation Intensity)颜色空间, 保持色度分量和饱和度分量不变, 利用DCNN对亮度分量进行增强, 最后将HSI颜色空间转换到RGB空间, 得到最终的增强图像。实验结果表明, 与现有主流的图像增强算法相比, 所提算法不仅能够有效提升亮度和对比度, 改善过增强现象, 而且能够避免色彩失真, 主观视觉和客观评价指标均得到了进一步提高。
2022-03-14 16:29:46 13.55MB 图像处理 图像增强 Retinex模 卷积神经
1
低照度图像增强均方误差,峰值信噪比,结构化相似度
1
针对多尺度Retinex算法在处理煤矿井下低照度图像时存在细节增强不足和耗时等问题,提出了一种基于光照校正的快速多尺度Retinex算法对煤矿井下低照度图像进行增强。该算法通过计算高斯模糊后图像的每个像素点的亮度值,将图像划分为暗调区域和高光区域,并对不同区域进行光照校正,从而降低高光区域的亮度,保证不过分曝光,同时提升较暗区域的亮度,凸显更多细节信息;利用三次快速均值滤波代替高斯滤波来估计光照强度,减少算法耗时。实验结果表明,该算法能有效提高图像的亮度和对比度,增强图像中暗调区域和高光区域的细节,具有较快的处理速度。
2022-01-20 12:02:09 1.02MB 行业研究
1
为了提高低照度条件下采集的全景图像的视觉效果,提出一种基于细节特征加权融合的低照度全景图像增强算法.首先,利用双边滤波算法提取出图像的光照分量,并分别采用自适应伽马校正和对比度受限的自适应直方图均衡化算法对光照分量进行处理;然后,与原始光照信息进行加权融合得到校正后的光照分量,并在反射分量调整时,提出一种自适应调整函数来校正反射信息;最后,将光照分量与反射分量合并,以实现对低照度全景图像的增强.实验结果表明,所提出的算法在提高图像亮度的同时,可以增强图像细节信息,去除噪声,使增强后图像色彩信息更加丰富自然.
1
针对光照不均匀、光线暗等环境导致图像采集单元采集到的图像视觉效果差、噪声大等问题,本文提出一种基于视网膜和皮层(Retinex)理论改进的低照度图像增强算法去恢复图像原有的视觉特征。将低照度图像从红、绿、蓝(RGB)空间转换到色调、饱和度、亮度(HSV)空间,在HSV空间的V通道去对低照度图像进行处理,这样能够避免图像三基色比例关系被破坏;采用改进的多尺度Retinex (MSR)算法估计光照分量,用非局部均值(NLM)滤波代替高斯滤波,利用滤波窗口与相邻窗口间的递归关系来简化计算,不仅能准确估计光照分量,还能够提高图像的处理速度;最后进行颜色空间逆变换,转换到人眼习惯的RGB颜色空间。实验结果表明该算法可以有效提高图像清晰度,保护图像的细节信息。
1
由于天气和光照等外部因素的影响,经常会出现亮度和亮度低的影像。此处将基于Retinex理论的算法和经颜色空间变换后对亮度和饱和度分量进行增强的算法进行结合,提出一种根据多尺度Retinex理论的改进算法,在保证色调基本不变的情况下,对亮度和饱和度进行调整,同时加入影像边缘细节特征,使增强后的影像更加符合人眼视觉特性,亮度和尺寸减小提高,影像细节更丰富,并且避免了颜色失真。
1
基于Retinex的MSRCR算法,MATLAB实现
2021-07-14 17:03:28 1KB MATLAB Retinex 低照度
1