为了降低带式输送机传统恒定功率工作模式下的功耗,采用图像处理的方法对带式输送机实时煤炭量检测技术进行了研究,并设计了基于图像处理的煤炭量AI识别系统。研究表明:该系统可以实现常规煤量检测的需求,并能够配合输送带进行功率调节,同时具有体积小、成本低、准确度高、安装便捷的优点,为当前的煤量检测提供了新的自动化解决方案。
2025-06-19 17:17:28 995KB 煤炭输送 图像处理
1
内容概要:本文详细介绍了一种基于Matlab的瓶子缺陷检测系统的设计与实现。该系统通过图像采集、预处理(如灰度化、去噪)、边缘检测(采用Canny算法)、形态学操作(如膨胀、腐蚀),以及缺陷识别与分类(基于边缘长度、面积等特征)等步骤,实现了高效、精确的质量检测。文中还讨论了针对不同类型瓶子(如透明玻璃瓶、磨砂瓶)的具体优化措施,以及如何应对生产线上的特殊挑战(如反光、水渍等)。 适合人群:从事工业自动化、机器视觉领域的工程师和技术人员,尤其是希望了解或应用Matlab进行图像处理和缺陷检测的人群。 使用场景及目标:适用于各类玻璃制品制造企业的质量控制部门,旨在提高检测精度和效率,减少人为因素导致的误差,确保产品符合质量标准。同时,也为研究者提供了一个完整的案例分析,帮助他们理解和掌握图像处理的基本方法及其在实际工程中的应用。 其他说明:文中提供的代码片段可以直接运行并测试,便于读者快速上手实践。此外,作者分享了许多实践经验,包括参数选择的经验值、常见错误及解决方案等,有助于读者更好地理解和改进自己的项目。
2025-06-19 11:34:22 643KB
1
内容概要:本文介绍了一个基于Matlab的数字图像处理实验,旨在从甲骨文图像中提取文字信息并处理。主要内容分为三个任务,首先是边缘检测和质心定位,再经过校正,确保文字走向垂直和水平;接着去除背景噪音和图像内部的杂质,通过膨胀、腐蚀以及形态学操作获取二值图像,进而对甲骨文图符进行分离和提取。第三步是对甲骨外轮廓进行多边形拟合并对文字进行分割。文章还介绍了具体的技术细节、代码实现及实验结果,指出了当前方法的优点和局限性,并强调未来改进的方向。 适用人群:图像处理领域的研究人员和技术爱好者,特别是对古汉字、文化遗产保护有兴趣的专业人士。 使用场景及目标:适用于考古研究、文物数字化保存、机器翻译、教育和科研机构等需要高效获取高精度古代文本信息的场景,目的是提供高质量的数据集供深入的研究和分析。 其他说明:本文提供的技术和方法可以作为一种有效的工具,为后续的文字识别和其他相关应用打下了坚实的基础。但需要注意的是,在面对复杂和特殊状况时(如严重破损),还需要结合更多高级别技术和专业知识来进行处理。
2025-06-19 08:36:33 1.96MB 数字图像处理
1
OpenCV,全称为Open Source Computer Vision Library,是一个强大的计算机视觉和机器学习库,广泛应用于图像处理和计算机视觉领域。它支持多种编程语言,包括C++、Python、Ruby等,并且可以在Linux、Windows、Android以及Mac OS等操作系统上运行。OpenCV的核心特点是其轻量级和高效性,由C函数和C++类组成,提供了丰富的图像处理和计算机视觉算法。 在ESP32和ESP32S3这样的微控制器上移植OpenCV,意味着我们可以将高级的图像处理技术应用于嵌入式系统,例如物联网(IoT)设备。ESP32S3是Espressif Systems推出的一款集成了Wi-Fi和蓝牙功能的SoC,适用于移动设备、可穿戴设备和智能家居等场景。与ESP32相比,ESP32S3具有双核CPU,更加强大的处理能力,特别是对于图像处理任务,其中Core0用于处理Wi-Fi数据传输,而Core1则专注于视觉处理任务。 移植OpenCV到ESP32S3时,硬件电路设计至关重要。考虑到内存需求,通常会选用内置8MB Flash和8MB SPI RAM的模块。此外,选用如OV2640这样的摄像头模块作为输入源,以及一个240x240 LCD屏幕用于实时显示图像处理结果,便于调试。这样的开发板在电商平台上可以找到,搜索关键词“esp32s3 opencv”即可。 移植过程中,软件部分的实现包括目标检测和颜色识别。在目标检测示例中,首先将RGB565格式的图像转换为灰度图像,然后进行二值化处理,以便更容易地识别目标。使用的OpenCV函数包括`cvtColor()`和`threshold()`。二值化后的图像能够清晰地突出目标物体。 对于颜色识别,如果图像格式为JPEG,可以直接在LCD屏幕上显示。如果不是,则可以读取像素值进行分析。例如,使用`Mat::at()`函数获取指定位置的像素RGB值,从而实现颜色识别。开发板提供的DEMO源代码可以通过ESP-IDF(Espressif IoT Development Framework)进行编译和运行。 将OpenCV移植到ESP32S3这样的微控制器上,可以实现低功耗、高性能的图像处理解决方案,这对于物联网应用尤其有价值。通过无线Wi-Fi传输识别结果,可以构建远程监控、智能安全系统等创新应用。这种移植不仅扩展了OpenCV的应用范围,也为嵌入式系统开发带来了新的可能性。
2025-06-18 15:28:45 687KB opencv esp32 图像识别
1
基于数字图像处理的车牌识别技术的研究,彭运生,王晨升,车牌识别系统(License Plate Recognition 简称LPR)技术广泛应用于智能交通系统中,一般分为车牌预处理、定位、字符分割和字符识别四个主�
2025-06-16 17:59:59 394KB 车牌识别
1
图像多分辨率金字塔是一种在图像处理领域中广泛应用的技术,它能够以不同的尺度表示图像,从而实现对图像的高效处理和分析。这一技术的核心在于通过一系列下采样和上采样操作来构建不同分辨率级别的图像层,每一层都包含了原始图像的信息,但细节程度逐层降低。在图像处理中,多分辨率金字塔常用于图像压缩、缩放、滤波、特征检测等任务。 拉普拉斯图像金字塔是多分辨率金字塔的一种变体,由贝尔实验室的吉姆·布雷克(James Blakely)于1979年提出。相比于基本的高斯金字塔,拉普拉斯金字塔更注重保留图像的高频信息,这对于后续的图像处理和分析尤为重要。在构建拉普拉斯金字塔时,首先会构建一个高斯金字塔,然后通过对相邻层的差分得到拉普拉斯金字塔的每一层。这种差分操作有助于捕获图像的边缘和细节,使得在低分辨率层次上仍能保持图像的清晰度。 多分辨率金字塔在图像处理中的应用广泛,以下是一些主要的应用场景: 1. **图像缩放**:通过金字塔结构,可以快速地在不同分辨率之间进行图像缩放,避免了简单插值方法可能导致的图像模糊或锯齿现象。 2. **图像融合**:多分辨率金字塔可用于将多源图像信息融合,尤其是在遥感图像处理中,可以将不同分辨率、不同传感器获取的图像进行有效结合。 3. **图像编码与压缩**:利用金字塔结构,可以先对图像进行下采样,减少数据量,再进行编码,从而达到高效的数据压缩。例如,JPEG 2000图像压缩标准就利用了多分辨率分析。 4. **图像滤波与平滑**:在金字塔的不同层上进行滤波操作,可以有效地去除噪声,同时保持图像的重要特征。 5. **特征检测与匹配**:拉普拉斯金字塔中的高频信息对于边缘和纹理的检测非常敏感,因此在图像特征提取和匹配中起到关键作用,如SIFT(尺度不变特征变换)和SURF(加速稳健特征)等算法。 6. **图像增强与复原**:通过多分辨率分析,可以更好地理解和恢复图像的局部特性,提高图像质量,特别是在老照片修复或去雾等任务中。 7. **计算机视觉**:在目标检测、图像分割、物体识别等计算机视觉任务中,多分辨率金字塔被用来提供不同尺度的观察,帮助算法在不同尺度上寻找和识别目标。 在“1.1 图像多分辨率金字塔”这个文件中,可能包含详细的理论介绍、算法步骤、示例代码以及实验结果等,可以帮助我们深入理解图像多分辨率金字塔的原理和实现方法。通过学习这些内容,我们可以掌握如何在实际项目中应用这一技术,提升图像处理的效果和效率。
2025-06-15 19:49:35 118KB 图像处理 多分辨率
1
数字图像处理是计算机科学领域的一个重要分支,它主要研究如何通过计算机系统来处理、分析和理解图像信息。数字图像处理技术广泛应用于医学图像分析、遥感图像解读、数字摄影、视频监控、工业检测、多媒体应用等多个领域。 在数字图像处理中,图像通常被定义为一个函数f(x,y),其中x和y是空间坐标,而f代表坐标点的强度值。图像处理的过程涉及图像获取、存储、传输、分析和展示等步骤。其中图像分析是核心部分,包括图像增强、滤波、边缘检测、特征提取、图像恢复、图像分割、图像压缩等内容。 图像增强的目的是改善图像的视觉效果,使观察者可以更容易地识别图像中的细节。常见的图像增强技术包括直方图均衡化、滤波去噪、图像锐化等。 滤波是图像处理中用于去除噪声的重要技术,它通过设计特定的滤波器,对图像进行平滑处理,从而达到减少图像噪声的效果。滤波器可以是线性或非线性的,常见的线性滤波器包括均值滤波器、高斯滤波器、中值滤波器等。 边缘检测是图像处理中的另一项重要技术,它的目的是标识出图像中亮度变化明显的点,边缘检测通常应用于物体的边界提取。常见的边缘检测算子包括Sobel算子、Canny算子、Roberts算子等。 特征提取是将图像中的重要信息转换为某种形式的过程,这些特征能够代表原始图像的关键属性,并用于后续的分析处理中。图像特征包括几何特征、纹理特征、颜色特征等。 图像恢复是指从退化的图像中重建原始图像的过程。退化可能由成像系统不完善、传输过程中的噪声等因素引起。图像恢复技术包括反卷积、盲解卷积等。 图像分割是将图像划分为多个区域或对象的过程,每个区域内部具有相似的特性。图像分割对于理解图像内容和后续的图像分析至关重要。图像分割方法包括基于阈值的分割、区域生长、分水岭算法等。 图像压缩旨在减小数字图像文件的大小,以节省存储空间和传输时间。压缩技术可以是有损的,比如JPEG压缩;也可以是无损的,如GIF压缩。 数字图像处理的理论和算法层出不穷,随着技术的发展,机器学习和深度学习技术也被广泛应用于数字图像处理中,大大提高了处理的智能化和自动化水平。 此《数字图像处理 第四版 课后习题答案(影印版)》将为学习数字图像处理的学生提供解题思路和方法,帮助他们更深入地理解和掌握数字图像处理的相关知识和技能,提升解决实际问题的能力。这套资料对于学术研究人员和工业界工程师也具有重要的参考价值。
2025-06-15 15:08:18 40.72MB 数字图像处理 课后习题答案 图像处理
1
数字图像处理是一门应用广泛的学科,它在工业、医疗、安防等多个领域都有重要的应用。车牌识别作为数字图像处理的一个具体应用实例,近年来得到了迅猛的发展,尤其在智能交通系统和智能安防系统中扮演着重要的角色。在车牌识别系统中,利用MATLAB这一强大的数学软件可以方便地进行算法的设计与实现,这对于工程技术人员和研究人员来说是一大福音。 在本课程设计中,我们将深入探讨如何利用MATLAB这一平台来实现车牌识别的功能。车牌识别主要包括车牌定位、字符分割、字符识别三个主要步骤。车牌定位是指从整个图像中识别并提取出车牌的位置,这一过程通常涉及到图像预处理、边缘检测、特征提取等技术。图像预处理的目的是改善图像质量,为后续的处理步骤提供更加清晰的图像信息;边缘检测则可以识别车牌的轮廓;而特征提取则进一步确认车牌的确切位置。 在定位出车牌之后,下一步是字符分割,即从车牌图像中提取出单个的字符。这一步骤是识别准确性的关键,因为在车牌识别中,字符分割不准确会导致后续的字符识别失败。字符分割技术包括投影法、连通域分析等方法,它们可以有效地识别出字符的边界,并将字符逐一分割开来。 字符识别阶段是整个车牌识别系统的核心,其目标是准确地识别出分割后的字符图像所代表的具体字母或数字。字符识别通常需要训练一个分类器,例如支持向量机(SVM)、神经网络等,通过大量的样本训练使得分类器具有识别字符的能力。在MATLAB环境下,我们可以方便地使用其提供的机器学习工具箱进行分类器的训练和应用。 整个车牌识别系统是一个复杂的工程,涉及到图像处理、模式识别、机器学习等多个领域的知识。在本课程设计中,学生将学习到如何综合运用这些知识,通过MATLAB这一平台,实现从图像输入到车牌号码输出的完整过程。这不仅能够加深学生对数字图像处理相关理论的理解,同时也能提高学生的实际操作能力,为将来的科研工作或工程实践打下坚实的基础。 此外,车牌识别技术的提升对智慧城市的建设具有重要意义。通过车牌识别技术,可以实现对车辆的自动监控和管理,进而提高交通管理的效率和安全性,减少交通违法行为,对城市交通拥堵问题的缓解也有一定的帮助。同时,车牌识别在停车场管理、高速公路收费、车辆防盗等方面也有着广泛的应用前景。 随着人工智能技术的不断进步,车牌识别的准确性与速度都将得到进一步的提升。未来的车牌识别系统将更加智能化、高效化,对车牌图像的适应性也将更强。因此,本课程设计不仅是一个学术项目,也是一个具有重要实际应用价值的研究课题。通过本课程的学习,学生将能够掌握数字图像处理与车牌识别的核心技术,为其未来的学术研究和职业发展提供宝贵的技能储备。
2025-06-12 11:10:45 654KB MATLAB 车牌识别 课程设计
1
xshow图文编辑软件支持控制显示字幕、图片、动态背景等。x show软件操作简单,即插即用,支持完全自定义操作的卡乐led显示屏控制软件。 xshow图文编辑软件功能介绍: 1、智能识别屏体,即插即用 2、化繁为简的炫字体 3、新颖的动态背景技术 4、无与伦比的性能 5、丰富、别致的接口 6、详尽的运行数据 7、完善的软件支持 xshow图文编辑软件截图
2025-06-12 09:49:15 8.44MB 图形图像-图像处理
1
简单介绍 1、图形处理库Clipper、Emgu.CV; 2、高性能推理引擎 Microsoft.ML.OnnxRuntime; 3、借用PaddleOCR模型; 4、现有功能,选择照片识别、截图识别,选择PDF文件识别。 详细展示链接:https://blog.csdn.net/weixin_42148410/article/details/147900933?spm=1001.2014.3001.5501
2025-06-12 09:39:08 41.06MB OCR 图像处理 PaddleOCR模型 图像识别
1