针对标准的容积卡尔曼滤波器(CKF) 设计需要精确已知噪声先验统计知识的问题, 提出一种自适应CKF 算法. 该算法在滤波过程中, 利用Sage-Husa 极大后验估值器对噪声的统计特性进行在线估计和修正, 有效地提高了CKF 的估计精度和数值稳定性. 在某些情况下, 噪声协方差估计会出现异常现象使得滤波发散, 进而提出了相应的改进方法. 仿真结果表明了自适应CKF 算法的可行性和有效性, 且明显改善了标准CKF 算法的滤波效果.

1
迭代容积卡尔曼滤波算法及其应用.pdf
2022-07-10 09:13:20 996KB 文档资料
提出了一种用于处理光电容积脉搏波信号的集成电路结构,将主要应用于可穿戴式多生理参数检测,例如血压、血氧、心率等。电路包括直流、交流分量分离电路,直流分量读出电路,低通滤波器,以及矩形波产生电路。直流、交流分量分离电路由跨阻放大器和金属氧化物半导体晶体管-双极晶体管(MOS-Bipolar)虚拟电阻构成,可以实现0.07-0.7 Hz的高通截止频率;低通滤波器可以实现16 Hz的低通截止频率。电路采用标准0.13 nm CMOS工艺设计,电源电压1.2 V。
2022-06-09 16:57:12 427KB 光电容积脉搏波
1
基于因子分析的建成环境容积率优化方法初探.doc
2022-06-03 09:00:32 27KB 互联网
人工智能-机器学习-波纹管式半容积换热器传热设计软件的开发研究.pdf
2022-05-03 17:06:07 2.59MB 人工智能 机器学习 文档资料
非接触式心率(HR)检测可以通过远程光电容积描记术(rPPG)实现, 引起越来越多的关注. 但在实际应用中, rPPG信号非常细微, 极易被噪声淹没, 从而导致现有的基于rPPG的心率检测方法很难准确地估计心率. 针对以上问题, 本文提出了一种增强rPPG信号、抑制噪声的非接触式心率检测方法. 在这种方法中, 首先通过欧拉颜色放大技术对正常HR分布频带上的色度信息进行放大, 避免rPPG信号过小被噪声淹没; 接着使用人脸检测与跟踪技术选定合适的感兴趣皮肤区域; 然后在感兴趣区域内提取放大后的色度信息, 使用盲源分离方法和相关性分析分离出rPPG信号; 最后对rPPG信号进行时域滤波与功率谱密度分析, 估计出HR值. 经多组实验验证, 本文所提方法相比于以前方法具有更高的HR估计精度.
1
想象未来几十年后的世界,您的孙子们可能不知道医院这个词,所有健康信息都是通过传感器远程记录和监测。想象您的家里配备了不同的传感器来测量空气质量、温度、噪声、光照和气压,并且根据您的个人健康信息,系统调整相关环境参数以优化您的家居环境。在实现美好未来的道路上,ADI公司处于一个独特的有利位置,通过提供相互补充的传感器、软件和算法来增加其在数字健康市场的份额。  心率(HR)监测是许多现有可穿戴产品和临床设备的关键特性。这些设备一般测量光电容积脉搏波(PPG)信号,为获得该信号,须利用LED照射人体皮肤,然后用光电二极管测量血流引起的反射光强度变化。PPG信号形态与动脉血压(ABP)波形相似,这使
1
容积卡尔曼滤波CKF实现二维目标跟踪 本人长期在CSDN,有技术问题可以联系博主,必回 算法:容积卡尔曼滤波CKF,可以参见《目标跟踪前沿理论与应用》 仿真场景:CV模型,二维目标, 传感器类型:主动雷达 MATLAB仿真仿真实现; 蒙特卡洛仿真实验, 仿真结果:二维跟踪轨迹,各维度跟踪轨迹,估计均方误差RMSE,位置RMSE,速度RMSE(结果图压缩文件都有)。 仿真参数设置:见下面链接的里面又给 仿真结果可以先看下面链接博客,代码肯定能运行且有结果,可开发性强, 如果有问题可联系WX:ZB823618313 对应的仿真模型及参数设置见容积卡尔曼滤波 对应的理论分析和参数设置,见博文《容积卡尔曼滤波CKF在目标跟踪中的应用—仿真部分》https://blog.csdn.net/weixin_44044161/article/details/115741172
针对使用扩展卡尔曼算法( extended Kalman filter,EKF)对复杂非线性状态估计时收敛速度慢、估计精 度低的问题,提出一种平方根容积滤波算法( square root cubature Kalman filter,SRCKF)。SRCKF使用基于容积原 则的数值积分方法直接计算非线性随机函数的均值和方差。该算法实现时只需计算函数值,避免了求导运算,降低了计算复杂度。且该算法传播了状态协方差的平方根,确保了协方差矩阵的对称性和半正定性,改进了数值精度和 稳定性。把平方根容积卡尔曼滤波算法
2022-04-12 16:28:14 810KB 工程技术 论文
1
针对传统容积卡尔曼滤波(CKF)在面对系统模型失配和状态突变滤波精度下降的问题,将强跟踪滤波器(STF)和高阶容积卡尔曼滤波(HCKF)相结合,提出一种简化高阶强跟踪容积卡尔曼滤波(RHSTCKF)算法.该算法具有比传统CKF更高的滤波精度,并且利用滤波模型的特点,简化HCKF的计算步骤,同时在HCKF中引入多重渐消因子增强算法的自适应性和应对状态突变的能力.将所提算法应用到SINS/GPS组合导航系统中进行仿真实验,结果表明,RHSTCKF可以准确估计出突变状态的真实值,能够抑制滤波器状态异常的干扰,滤波性能明显优于HCKF,能够提高组合导航系统的自适应性和定位精度.
1