“我们为什么选择Sun?用一句话说,就是Sun富有创新能力,Sun提供了一项高度创新的技术,这当然是十分重要的。但Sun真正的大手笔是,他们提出一项富于创新的合作方案,”HPCVL实验室执行主任Kenneth Edgecombe博士说,“其它因素是,Sun在产品强劲性、可靠性和性/价比方面享有盛誉;Sun拥有广泛系列的产品,它们均运行于一种通用操作系统;Sun Solaris操作系统受到客户高度青睐。” Sun公司是高性能计算领域的佼佼者,其平台被用于构建世界一流的高性能计算环境。这个环境在加拿大高性能计算虚拟实验室(HPCVL)得以实现,服务于Queen's大学、Carleton大学、加拿大皇家军事学院和渥太华大学等多所高等教育机构。HPCVL需要一个强大、可扩展且灵活的计算系统,能够处理复杂的研究、工程和商业应用,并提供安全的远程访问。 Sun Fire 6800服务器成为了构建这一系统的核心,每部服务器搭载96颗处理器,总计4部,提供了强大的处理能力。此外,Sun StorEdge T3磁盘阵列提供了3.9TB的存储空间,确保了海量数据的高效存储和访问。整个系统运行在Sun Solaris 8操作系统上,这是一个受到广泛赞誉的稳定、高效的平台。 Sun Grid Engine软件是系统的关键组成部分,它负责负载均衡,管理批处理任务,并与Sun HPC ClusterTools协同工作,优化计算任务在4部服务器之间的分配。这种优化的计算资源管理和调度,确保了系统的高效运行和资源的最大化利用。 Sun公司的创新能力、产品性能和性价比是HPCVL选择其作为合作伙伴的重要原因。Sun不仅提供了硬件和软件解决方案,还积极参与合作,如派出现场工程师支持、资助成员大学的项目,以及举办针对科研人员的研讨会。HPCVL实验室执行主任Kenneth Edgecombe博士对Sun的高度评价反映了这种深度合作的价值。 Sun的技术支持和合作方式被形容为“无与伦比”。通过成为网格和门户计算的Sun技术保障中心,HPCVL实现了用户无论身处何地,都能通过任何配置有浏览器的设备安全可靠地访问系统。这种远程访问能力和系统的安全性极大地增强了研究工作的便利性和效率。 HPCVL与Sun的合作证明了Sun平台在高性能计算领域的卓越性能和可靠性。Edgecombe博士的满意度表明,他们对当前的合作关系感到满意,并期待未来与Sun进行更深层次的合作。这样的成功案例展示了Sun如何通过其创新技术和全面的支持服务,为高性能计算环境提供坚实的基础,推动科学研究和技术进步。
2025-10-31 13:03:51 21KB
1
脉冲涡流检测仿真模型的快速精准计算及其实时引导教学流程,脉冲涡流仿真:模型建立与深度检测实验解析及精确计算指导手册,图1:脉冲涡流检测三维仿真模型 图2:脉冲涡流检测激励信号 图3:脉冲涡流检出电信信号 图4:脉冲涡流针对缺陷不同深度扫描检出电信信号 图5:脉冲涡流对缺陷不同深度扫描检出电压信号局部放大图 图6:脉冲涡流磁通密度模 整个模型扫描计算时间1分30秒,速度更快,检出结果更精确 附言:有远程指导,直至指导自己能够建立模型,解决是所有疑难杂症,最后自己完成脉冲涡流仿真 ,核心关键词:脉冲涡流、仿真模型、检测、激励信号、检出电信信号、深度扫描、检出电压信号、磁通密度模、计算时间、远程指导。,脉冲涡流仿真模型与检出信号研究
2025-10-27 20:16:06 541KB 数据结构
1
多编组列车仿真:基于Fluent气动数据与Simpack力元接口的车体加载与实时更新分析,多编组列车仿真,车体加载fluent里导出的气动力进行仿真。 利用脚本建立fluent里的导出的气动力数据和simpack力元的接口进行快速的数据更新 ,多编组列车仿真;气动力加载;数据接口建立;数据快速更新;fluent与simpack联接,"多编组列车仿真:气动力数据快速更新与Simpack力元接口整合" 在现代交通工具中,高速列车因其高速、高效、节能和环保的特点成为越来越重要的选择。随着计算机技术的进步,多编组列车的仿真技术得到了飞速发展,它能够模拟列车在运行过程中所遭遇的各种复杂情况,为实际设计和运营提供参考。本篇文章将围绕“多编组列车仿真”这一主题展开,详细探讨基于Fluent气动数据与Simpack力元接口的车体加载与实时更新分析技术。 仿真过程中涉及的Fluent软件是一个广泛应用于计算流体动力学(CFD)的工具,它能够模拟气体和液体流动。在多编组列车仿真中,Fluent被用来生成气动力数据,这些数据描述了列车在运行过程中所受到的气动影响。这些影响包括列车表面的压力分布、流体速度场等信息,这些对于准确预测列车的动态响应至关重要。 Simpack是一种多体动力学仿真软件,它可以模拟复杂系统中各部件之间的相互作用。通过Simpack力元接口,仿真系统能够整合来自不同源的数据,并在仿真模型中进行实时的力和运动分析。Fluent产生的气动力数据通过脚本语言(如Python)进行处理后,能够与Simpack软件实现无缝对接。这种数据接口的建立允许仿真软件实时更新气动力数据,为列车的动态加载提供了强大的支持。 在技术实现方面,首先需要从Fluent导出气动力数据。这些数据通常保存在特定格式的文件中,然后通过编写脚本来解析这些文件,并将解析后的数据转换为Simpack能够识别的格式。接着,通过Simpack力元接口,这些数据被用来实时更新仿真模型中的力元参数。这样一来,当列车在运行时遭遇不同的气动力条件,模型中力元参数的动态更新能够保证仿真结果的准确性。 仿真过程不仅仅是数据处理和软件操作的简单组合,它还涉及到对列车运行环境的深入分析。例如,多编组列车在进出隧道、跨越桥梁等特殊环境下会受到不同的气动作用。仿真分析需要考虑这些因素,对列车运行的每一阶段进行详细的模拟。这样,设计师和工程师才能够全面了解列车在各种条件下的性能,为实际的列车设计和改进提供科学依据。 在现代交通运输中,多编组列车仿真技术分析的应用范围越来越广泛。它不仅用于新车型的设计验证,还用于现有车辆的运行性能评估和安全评估。通过仿真,可以在不实际运行列车的情况下,预测和分析可能存在的问题,从而节省大量的时间和成本。同时,它还有助于优化列车运行的路径规划、提升乘坐舒适性,并为列车的长期维护和管理提供重要的数据支持。 多编组列车仿真技术在提高列车设计和运营效率方面发挥着至关重要的作用。通过Fluent和Simpack软件的结合使用,实现对列车气动力的精确模拟和分析,将有助于推动现代轨道交通技术的发展,使其更加高效、安全和环保。随着计算机技术的不断进步,未来仿真技术将在多编组列车领域发挥更大的作用,为轨道交通的创新和发展提供有力的技术支撑。
2025-10-20 19:57:15 60KB ajax
1
量化交易如何建立自己的算法交易,从各个角度给初学者普及知识,让你能更好的学习量化交易!让你能非常方便的生成自己的策略!
2025-10-17 11:11:31 14.82MB 量化交易
1
静态、动态贝叶斯网络—GeNIe软件建模 贝叶斯网络模型建立指导:包括条件概率表(CPT)的设定方法(二态或者多状态均可),软件的使用方法动态贝叶斯网络,分析方法等 如何构建贝叶斯的结构,以及如何获取贝叶斯网络的参数(包括先验概率和条件概率CPT) 贝叶斯网络的敏感度分析以及重要度分析方式,例如龙卷风图,BIM RRW等重要度评估方法 GeNIe软件助力贝叶斯网络建模与分析:结构构建、参数获取及敏感度评估 贝叶斯网络是一种基于概率推理的图形化模型,它能够对不确定性进行推理、学习和预测,广泛应用于风险评估、决策支持、数据挖掘等领域。GeNIe软件是支持贝叶斯网络建模与分析的工具之一,它具备直观的图形界面,方便用户构建和操作网络模型。在贝叶斯网络建模的过程中,模型的结构构建和参数设定是两个核心步骤。结构构建涉及到确定变量之间的依赖关系,以图形化的方式表示变量间的条件独立性,形成一个有向无环图。参数设定则关注于为网络中的条件概率表(CPT)赋予具体的数值,这些数值可以是先验概率也可以是通过数据学习得到的条件概率。 在静态和动态贝叶斯网络中,静态网络适用于那些不随时间变化的场景,而动态网络则涉及到随时间演化的系统。动态贝叶斯网络能够描述时间序列数据,通常会涉及到时间片的概念,每个时间片包含状态变量的更新,通过转移概率来描述时间之间的依赖关系。动态网络的建立需要考虑状态转移模型,以及可能的观测模型。 在使用GeNIe软件进行贝叶斯网络建模时,用户可以通过拖放节点和连接它们的方式来创建网络结构,并通过界面输入或导入数据来设定CPT。软件还提供了学习功能,可以基于实际观测数据自动调整网络参数,以更好地反映实际情况。 一旦构建了贝叶斯网络,分析方法就变得至关重要。分析通常包括概率推理、敏感度分析和重要度分析。概率推理是指在给定部分变量的观测值后,计算其他变量概率分布的过程。敏感度分析则用于评估模型输出对于输入参数变动的敏感程度,这对于验证模型的稳健性非常重要。重要度分析则关注于特定变量对模型输出的影响力,有助于识别模型中最重要的变量。 在GeNIe中,敏感度分析可以通过龙卷风图来展示,而重要度分析可能通过BIM RRW等方法进行。这些方法帮助用户了解哪些参数或变量对结果影响最大,从而可以优先关注和优化这些部分。 GeNIe软件在贝叶斯网络建模与分析中发挥了重要的作用,它不仅提供了结构构建的便利,还简化了参数获取和敏感度评估的过程。通过软件的应用,研究者和工程师可以更加高效地建立模型,快速得到结果,并进行深入的分析和决策支持。 贝叶斯网络作为一种强大的概率模型,在处理不确定性问题时展现出了其独特的优势。而GeNIe软件为这种模型的创建和分析提供了强大的支持,使得用户能够更加直观和高效地利用贝叶斯网络解决实际问题。
2025-10-16 09:05:19 1.47MB
1
在日常使用计算机的过程中,图标的正常显示对于用户来说至关重要。图标不仅提供视觉上的便利,更是应用程序和文件类型的重要标识。然而,由于病毒攻击、系统更新或软件冲突等因素,我们经常可能会遇到图标的显示不正常的情况。这些情况包括但不限于图标错位、图标变形或者图标缺失,严重影响了用户的使用体验。为解决这一问题,本文将详细介绍如何使用特定的工具重新建立图标关联,以恢复图标的正常显示。 我们需要理解操作系统中图标的显示机制。在Windows操作系统中,系统会根据文件的扩展名与已安装的应用程序进行关联,从而确定每个文件类型的图标。例如,一个`.docx`扩展名的文件通常会显示Word的图标,因为系统已经知道这个文件类型是由Microsoft Word来处理的。这种关联是通过一个名为图标缓存的系统功能来实现的,它记录了文件类型与应用程序之间的对应关系。 然而,当系统遇到某些异常情况时,这种关联可能会被破坏。可能是由于病毒篡改了系统文件,也可能是系统更新后某些注册表项发生了变化,或者是软件安装和卸载过程中造成了文件类型与应用程序关联的混乱。在这些情况下,用户需要通过特定的方法来恢复正常的图标显示。 为此,可以使用专门的小程序工具来解除图标的混乱绑定状态。这些工具可能通过以下几种方式来解决问题:清理系统图标缓存、修复受损的注册表项以及重新设置文件类型与应用程序之间的正确关联。这类工具通常操作简单,用户只需运行程序并按照提示完成一系列操作,即可解除图标的混乱状态。 具体操作步骤可能如下:运行名为“重建图标缓存”的小程序。这将触发系统重建图标缓存,清除旧的、损坏的图标缓存数据,并生成新的图标缓存。在此之后,用户需要右键点击那些显示不正常的文件,从弹出的菜单中选择正确的程序来打开文件。这样,系统就会自动重新建立图标与程序之间的正确关联。 需要注意的是,在使用这种工具时,用户应该格外小心,确保所使用工具的来源可靠。在修复图标的过程中,如果操作不当,可能会对系统稳定性造成影响,甚至引入恶意软件,对数据安全构成威胁。因此,在进行操作前,建议备份重要数据,并在安全的环境下进行。 除了使用专门的工具外,用户还可以尝试其他方法,比如手动调整文件类型与程序的关联设置。在Windows系统中,通过控制面板中的“默认程序”设置,用户可以手动更改默认程序或修复文件类型的关联。这是系统自带的解决方案,虽然步骤相对繁琐,但同样能够达到恢复图标关联的目的。 在完成图标关联的重新建立后,用户应该能够观察到图标的显示恢复正常。图标错位、变形或者缺失的问题将得到解决,文件和应用程序的图标将正确无误地显示出来。这不仅让计算机桌面的视觉效果更加整洁,也使得用户能够更快速地识别和选择需要打开的文件和程序。 虽然重新建立图标关联可以解决图标显示不正常的问题,但最好的策略还是预防。用户应当避免安装来源不明的软件,定期进行系统更新,以及使用可靠的安全软件进行病毒扫描。这些预防措施能够大大减少图标显示异常的可能性,保证计算机系统的稳定性和用户数据的安全。
2025-10-14 23:22:07 50KB 重建图标
1
Python语言因其简洁性和强大的库支持,在数据科学、机器学习和自动化领域得到了广泛的应用。Matlab同样在数值计算和模型仿真领域具有深厚的用户基础。Simulink作为Matlab下的一个集成环境,专门用于多域仿真和基于模型的设计,尤其适用于复杂动态系统的建模和仿真。 在需要进行复杂仿真与强化学习结合的场景中,将Python的灵活性与Matlab/Simulink强大的仿真能力相结合,可以发挥两者的优势。通过Python调用Matlab以及Simulink模型,开发者能够利用Python进行高级数据处理和算法开发,并通过Matlab进行仿真环境的搭建和模型测试。这种方法在学术研究和工业应用中都有重要的意义。 Python与Matlab之间的交互可以通过多种方式实现,如使用Matlab的Python接口、调用Matlab引擎,或是通过网络服务等方式。这使得Python程序能够启动Matlab进程,运行Matlab代码,甚至操作Simulink模型。Simulink模型的参数化和自动化运行,可以通过Matlab脚本或函数来完成,这样一来,通过Python就能实现对Simulink模型的远程调用和控制。 强化学习作为机器学习的一个分支,依赖于环境模型进行学习策略的迭代优化。通过Python与Matlab/Simulink的结合,可以构建一个从简单到复杂的仿真环境,以此来模拟实际应用场景中可能遇到的各种问题。这样的环境不仅需要能够准确模拟物理世界的动态特性,还需要能够提供足够的实时反馈,以便于强化学习算法能够从中学习到有效的策略。 在构建这样的仿真环境时,首先需要在Matlab中使用Simulink建立相应的模型。这包括对系统动态的建模、外部信号输入的定义、系统响应输出的设定等。一旦模型建立完成,就可以利用Matlab强大的数值计算能力对其进行仿真测试,确保模型的正确性和稳定性。 随后,可以编写Matlab脚本或函数,将Simulink模型封装为一个可用的服务。这个服务将能够接收来自Python的指令,并根据指令启动或调整仿真过程。通过这种方式,Python就可以控制Simulink模型的运行,例如更改模型参数、加载不同的初始条件、实时读取仿真数据等。 在此基础上,Python程序可以利用强化学习库(如TensorFlow、Keras、PyTorch等)来实现智能体的设计和训练。智能体通过与Matlab/Simulink所提供的仿真环境进行交互,根据环境反馈调整其行为策略。Python负责策略的更新和决策的生成,而Matlab/Simulink则负责根据智能体的决策来更新仿真环境的状态,并返回相应的反馈。 这种联合使用Python、Matlab和Simulink的方法,极大地拓展了仿真与人工智能技术的应用范围。在实际应用中,这种方法被广泛用于无人机控制、自动驾驶汽车、机器人学、电力系统控制等复杂系统的建模和控制策略的学习。 此外,由于Matlab/Simulink也提供了与C++等其他编程语言的交互能力,因此开发者可以根据需要将不同语言的优势结合起来,构建更为复杂和高效的仿真与学习系统。在这些系统中,Python和Matlab/Simulink的结合使用,展现了跨语言、跨平台协作的巨大潜力。 为了提高开发效率,还可以将整个流程自动化,包括模型的构建、仿真参数的设置、智能体策略的训练和评估等。自动化流程使得实验可以重复进行,同时降低了人为操作的错误率,这对于研究和工程应用都是非常有益的。 Python与Matlab/Simulink的结合使用,为创建复杂的仿真环境和进行强化学习提供了强大的技术支持。通过这种方式,开发者可以充分利用两种工具的优势,构建出性能优越的智能系统。
2025-10-08 15:56:20 3KB
1
阿里巴巴国际站数据体系建立是构建在全球领先的B2B电商平台——阿里巴巴国际站上的一个核心系统,旨在通过高效的数据管理和分析,提升用户体验,优化商业决策,并驱动业务增长。数据体系的建立对于任何企业,尤其是电子商务平台来说,都是至关重要的,因为它能够帮助企业深入理解用户行为,挖掘潜在市场机会,以及实现精细化运营。 我们需要理解数据体系建立的基础概念。数据体系是指一套完整的数据收集、存储、处理、分析和应用的架构,它包括数据仓库、数据湖、数据模型、元数据管理、数据质量控制等组成部分。在阿里巴巴国际站的场景下,这一体系需要处理海量的商家信息、商品数据、用户行为数据、交易数据等,以便进行深度分析和智能决策。 数据收集是数据体系的第一步,它涉及到从各个业务系统和接口中抽取数据,如订单系统、用户行为日志、营销活动数据等。阿里巴巴国际站可能使用实时数据流处理技术,如Apache Kafka或Flink,来实现实时的数据摄取和传输。 接着,数据存储和管理是关键。数据仓库通常用于存储结构化数据,而数据湖则用于保存半结构化和非结构化数据,如文本、图像、视频等。Hadoop和Spark等大数据处理框架可能被用来处理和分析这些数据。 数据模型的设计决定了数据如何被组织和理解。在阿里巴巴国际站,可能有用户模型、商品模型、交易模型等多个维度,这些模型帮助构建业务逻辑和数据分析的骨架。同时,元数据管理确保数据的准确性和一致性,提供数据血缘和数据生命周期管理。 数据质量控制是确保数据可用性的保障,包括数据清洗、去重、异常检测等步骤,以减少错误和不一致。此外,数据安全和隐私保护也是数据体系的重要组成部分,尤其是在跨境贸易环境中,必须遵守各国的数据法规。 数据分析和应用是数据体系的最终目标。阿里巴巴国际站可能会利用机器学习和人工智能技术,例如推荐系统、预测分析、用户画像等,来提升用户体验,提高转化率。例如,通过用户行为分析,可以优化搜索算法,提供个性化推荐;通过交易数据分析,可以发现销售趋势,指导商家策略制定。 阿里巴巴国际站数据体系建立的目的是通过全面的数据驱动,实现对用户需求的精准把握,优化平台功能,提升用户效益,促进全球商家与买家之间的有效连接。这一过程中涉及的技术和方法论,对于其他电商平台乃至各行各业的数据驱动型企业都有着广泛的借鉴意义。
2025-10-02 17:00:15 2.22MB 数据体系建立
1
内容概要:本文详细介绍了ABB机器人外部轴(如变位机)的校准流程,重点包括工具坐标系(tool)的设置、外部轴基座校准、标记点的记录与位置修改、工件坐标系(wobj)的创建与定义方法,以及协调功能的启用。通过五步法校准外部轴基座,利用机器人TCP对准变位机旋转盘上的固定标记点,记录多个位置后计算其空间关系,并最终设定外部轴Base的Z正方向。此外,还说明了如何通过用户三点法建立工件坐标系,并正确配置ufmec参数指向变位机名称,从而实现机器人与外部轴的联动控制。; 适合人群:从事工业机器人调试、自动化集成或ABB机器人应用的技术人员,具备基本机器人操作与编程能力的工程师;适用于有外部轴集成需求的现场应用人员。; 使用场景及目标:①实现ABB机器人与外部变位机的精确协同运动;②完成外部轴的Base Frame标定与工件坐标系的准确建立;③支持多轴联动的自动化焊接、装配等工艺场景; 阅读建议:操作前需确保工具坐标准确,严格按照步骤执行点位记录,注意TCP姿态与坐标方向的一致性,避免因标定误差导致运行偏差。建议结合实际设备边操作边对照文档,确保每一步参数设置正确。
1
MATLAB综合能源程序,对应文章《冷热电气多能互补的微能源网鲁绑优化调度》 针对综合能源系统,研究考虑碳排放的优化调度,建立风电光伏P2G燃气轮机等多能耦合元件的运行特性模型,电、热,冷,气多能稳态能流模型,考虑经济成本最优、碳排放最优的优化调度模型。
2025-09-25 19:55:48 227KB matlab
1