基于MATLAB的6自由度机械臂RRT路径规划仿真系统:可自定义障碍物与起始点坐标的灵活应用,rrt路径规划结合机械臂仿真 基于matlab,6自由度,机械臂+rrt算法路径规划,输出如下效果运行即可得到下图。 障碍物,起始点坐标均可修改,亦可自行二次改进程序。 ,核心关键词:RRT路径规划; 机械臂仿真; MATLAB; 6自由度; 障碍物; 起始点坐标; 程序改进。,MATLAB中RRT路径规划与6自由度机械臂仿真 在现代机器人领域,路径规划与机械臂仿真作为两个重要的研究方向,它们的结合对于提升机器人的灵活性与应用范围具有重要意义。MATLAB作为一款强大的工程计算软件,提供了丰富的工具箱,非常适合进行复杂算法的研究与仿真。其中,快速随机树(Rapidly-exploring Random Tree,简称RRT)算法是一种用于解决机器人路径规划问题的启发式搜索算法,尤其适用于具有复杂环境和多自由度的空间路径规划。 本文所介绍的仿真系统,基于MATLAB环境,专注于6自由度机械臂的路径规划问题。6自由度指的是机械臂能够沿六个独立的轴进行移动和旋转,这样的机械臂具有很高的灵活性,能够执行复杂的任务。然而,高自由度同时带来了更高的路径规划难度,因为在规划路径时不仅要考虑机械臂本身的运动学约束,还需要考虑环境中的障碍物对路径选择的限制。 RRT算法因其随机性和快速性,在处理高维空间路径规划问题时表现出色。它通过随机采样扩展树形结构,并利用树状结构快速探索空间,以找到从起点到终点的可行路径。在本系统中,RRT算法被用于6自由度机械臂的路径规划,能够有效地处理机械臂与环境障碍物的碰撞检测问题,并给出一条既满足运动学约束又避开障碍物的路径。 系统的特色在于其灵活的应用性,用户可以自定义障碍物与起始点坐标,这样的设计给予了用户更高的自主性和适用性。这意味着该系统不仅能够适用于标准环境,还能根据实际应用场景的需求进行调整,从而解决特定的问题。同时,系统还开放了程序的二次改进接口,鼓励用户根据个人需要对程序进行修改和优化,这样的开放性设计使得该系统具有长远的研究和应用价值。 文章提供的文件列表显示了系统的研发过程和相关研究资料。其中包括了研究引言、核心算法理论、仿真实现以及相关的图像和文本资料。这表明了该系统研究的全面性和系统性,同时也为用户提供了深入学习和研究的材料。 基于MATLAB的6自由度机械臂RRT路径规划仿真系统是机器人技术与计算机仿真相结合的产物。该系统不仅展示了RRT算法在机械臂路径规划领域的应用潜力,还体现了MATLAB在工程计算与仿真领域的优势。通过本系统,研究人员和工程师能够更加直观和高效地进行路径规划实验,从而推动机器人技术的进一步发展。
2025-06-01 15:36:44 339KB
1
基于时间序列预测的组合模型,CNN-LSTM-Attention、CNN-GRU-Attention的深度学习神经网络的多特征用电负荷预测。 关于模型算法预测值和真实值对比效果如下图所示,同时利用R2、MAPE、RMSE等评价指标进行模型性能评价。 关于数据:利用的是30分钟一采样的电力负荷单特征数据,其中还包含对应的其他影响特征如温度、湿度、电价、等影响影响因素;具体如图详情图中所示。 个人编码习惯很好,基本做到逐行逐句进行注释;项目的文件截图具体如图详情所示。 时间序列预测是一种通过分析历史数据点来预测未来数据点的方法,尤其在电力系统中,准确预测用电负荷对于电力调度和电网管理至关重要。随着深度学习技术的发展,研究者们开始尝试将复杂的神经网络结构应用于时间序列预测,以提升预测的准确度和效率。在本次研究中,提出了一种基于深度学习的组合模型,该模型结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)和注意力机制(Attention),以实现对多特征用电负荷的预测。 CNN是一种深度学习模型,它能够在数据中自动学习到层次化的特征表示,特别适合处理具有空间特征的数据。在电力负荷预测中,CNN能够提取和学习电力数据中的时序特征,例如日周期性和周周期性等。 LSTM是一种特殊的循环神经网络(RNN),它通过引入门机制解决了传统RNN的长期依赖问题,能够有效捕捉时间序列中的长期依赖关系。而GRU作为LSTM的一种变体,它通过减少门的数量来简化模型结构,同样能够学习到时间序列数据中的长期依赖关系,但计算复杂度相对较低。 注意力机制是一种让模型能够聚焦于输入数据中重要部分的技术,它可以使模型在处理序列数据时动态地分配计算资源,提高模型对重要特征的识别能力。 在本研究中,通过结合CNN、LSTM/GRU以及Attention机制,构建了一个强大的组合模型来预测用电负荷。该模型能够利用CNN提取时间序列数据中的特征,通过LSTM/GRU学习长期依赖关系,并通过Attention机制进一步强化对关键信息的捕捉。 在数据方面,研究者使用了30分钟一采样的电力负荷单特征数据,并加入了温度、湿度、电价等多个影响因素,这些都是影响用电负荷的重要因素。通过整合这些多特征数据,模型能够更全面地捕捉影响用电负荷的多维度信息,从而提高预测的准确性。 为了评估模型性能,研究者采用了多种评价指标,包括R2(决定系数)、MAPE(平均绝对百分比误差)和RMSE(均方根误差)。这些指标能够从不同角度反映模型预测值与真实值的接近程度,帮助研究者对模型的性能进行综合评价。 研究者在文章中详细展示了模型算法预测值和真实值的对比效果,并对结果进行了深入分析。此外,项目文件中还有大量代码截图和注释,体现了研究者良好的编程习惯和对项目的认真态度。 本研究提出了一种结合CNN、LSTM/GRU和Attention机制的深度学习组合模型,该模型在多特征用电负荷预测方面展现出较好的性能。通过对历史电力负荷数据及相关影响因素的学习,模型能够准确预测未来用电负荷的变化趋势,对于电力系统的运营和管理具有重要的应用价值。
2025-05-30 13:51:55 425KB 数据仓库
1
在人工智能领域,随着深度学习技术的快速发展,大模型微调技术成为了一项重要的研究方向。模型微调,尤其是针对预训练语言模型的微调,已经成为提高特定任务性能的有力手段。本文将介绍如何使用LoRA技术进行qwen模型的微调,以期优化模型的推理效果。LoRA,即Low-Rank Adaptation,是一种新颖的参数高效微调方法,它通过引入低秩分解来调整预训练模型的权重,显著减少了微调时所需的计算资源和存储成本。 在进行模型微调之前,首先需要准备相应的数据集文件。这些数据集需要覆盖所期望训练模型执行的任务领域,以确保微调后的模型能够适应具体的应用场景。例如,如果目标是进行自然语言处理任务,那么就需要准备大量的文本数据,包括标注数据和未标注数据。数据集的选择和质量对最终模型的性能有着直接的影响。 训练环境的搭建是模型微调的第二个重要步骤。由于使用了LoRA技术,因此需要配置支持该技术的深度学习框架和计算资源。在教程中,会提供详细的环境搭建指南,包括必要的软件安装、依赖项配置、以及可能需要的硬件配置建议。对于初学者而言,这一部分的教程能够帮助他们快速进入模型微调的学习状态,无需过多地担心环境搭建的问题。 接着,我们将详细解析LoRA微调的python代码。在代码中,会具体展示如何加载预训练的qwen模型,如何应用LoRA进行微调,以及如何在特定的数据集上进行训练。代码部分不仅包含模型的调用和微调,还包括了如何保存和加载微调后的模型,以及如何评估微调模型的效果。通过这些实际的代码操作,初学者可以清晰地理解模型微调的整个流程,并掌握相应的技能。 LoRA微调方法的核心优势在于其高效率和低资源消耗。在微调过程中,LoRA技术通过低秩分解来寻找最有效的权重更新方式,这意味着在更新模型时只需要对少量的参数进行调整。这样不仅节约了存储空间,也减少了训练时间,特别适合于资源受限的环境,如边缘计算设备或移动设备。 此外,本资源还特别适合初学者使用。它从基础的模型微调概念讲起,逐步深入到LoRA微调的具体技术细节。通过实例化的教程和代码,初学者能够循序渐进地学习并实践大模型微调技术。通过本资源的学习,初学者不仅能够理解模型微调的基本原理,还能掌握实际操作技能,并能够将所学应用到实际项目中去。 在总结以上内容后,本资源的实用性便不言而喻。无论是对于从事人工智能研究的专业人员,还是对于刚接触模型微调的初学者,本资源都提供了一个很好的起点,帮助他们快速理解和掌握LoRA微调技术,有效地优化模型的推理效果。通过这份资源,用户可以更容易地将先进的模型微调技术应用于自己的项目中,提升人工智能应用的性能和效率。
2025-05-26 10:42:15 132KB 人工智能 LoRA
1
Cesium全球体积云效果的三维纹理数据(体数据)
2025-05-25 15:31:35 110.84MB cesium
1
在iOS开发中,创建引人入胜的用户体验是至关重要的,而卡片堆叠效果就是一种能够提升用户交互体验的设计手法。这个"ios-卡片堆叠效果Demo.zip"项目旨在演示如何在iOS应用中实现这样的效果,它允许用户通过手势操作卡片视图进行移除和还原。这种视觉特效常见于许多现代应用程序,特别是那些需要展示多条信息或选项的应用。 要理解这个Demo的核心概念,我们需要先了解以下几个关键知识点: 1. **UIKit动画**:UIKit是iOS开发的主要框架,它提供了一套丰富的工具来处理用户界面和动画。在本Demo中,我们将主要利用`UIView`的动画方法,如`animate(withDuration:animations:)`和`transition(with:duration:options:animations:completion:)`,来实现卡片的移动、旋转和缩放效果。 2. **手势识别**:为了响应用户的触摸输入,项目可能使用了`UIGestureRecognizer`,例如`UIPanGestureRecognizer`,来识别用户的拖动操作。当用户滑动卡片时,手势会触发相应的动画动作。 3. **视图控制器**(`UIViewController`):在iOS应用中,视图控制器管理着屏幕上的视图和用户交互。在这个Demo中,视图控制器可能是动画效果的触发点和逻辑中心。 4. **自定义视图类**:为了实现特定的卡片样式和动画行为,开发者可能会创建自定义的`UIView`子类。这允许他们扩展基础视图的功能,添加特殊属性和方法。 5. **布局约束**(Auto Layout):在iOS中,布局约束用于定义视图在屏幕上的位置和大小。在卡片堆叠效果中,这些约束可能被动态调整以实现视图的堆叠和展开。 6. **Core Animation**:虽然主要使用UIKit动画,但为了某些高级效果,开发者可能会结合Core Animation(CA)框架,如`CATransform3D`,来创建更复杂的3D变换和过渡效果。 7. **Git版本控制**:项目链接到GitHub,这意味着代码是开源的,开发者可以查看和学习源码,了解实现细节。Git也提供了版本控制,方便协作和更新。 通过分析这个Demo,开发者不仅可以学习到如何在iOS中创建卡片堆叠效果,还能掌握视图动画、手势识别和自定义视图等核心技能。对于希望提升应用交互性的iOS开发者来说,这是一个很好的实践案例。记得下载项目并研究其源代码,动手实践将有助于深入理解和掌握这些技术。
2025-05-21 18:03:29 160KB 视图动画
1
基于Cesium的带方向水流 / 风场效果-数据
2025-05-20 19:22:23 12.78MB Cesium 水动力模型
1
卷积神经网络建立在卷积运算的基础上,它通过在局部感受野内将空间和通道信息融合在一起来提取信息特征。为了提高网络的表示能力,最近的几种方法已经显示了增强空间编码的好处。在这项工作中,我们专注于通道关系,并提出了一种新颖的架构单元,我们将其称为“挤压和激励”(SE)块,它通过显式建模通道之间的相互依赖性来自适应地重新校准通道方面的特征响应。我们证明,通过将这些块堆叠在一起,我们可以构建在具有挑战性的数据集上具有极好的泛化能力的 SENet 架构。至关重要的是,我们发现 SE 模块能够以最小的额外计算成本为现有最先进的深度架构带来显着的性能改进。 SENets 构成了我们 ILSVRC 2017 分类提交的基础,该分类提交赢得了第一名,并将 top-5 错误率显着降低至 2.251%,与 2016 年获胜条目相比相对提高了约 25%。
2025-05-20 10:40:43 2.06MB se注意力机制
1
海媚EX-8效果器电脑调音软件是一款专为音响爱好者和专业音频处理人士设计的强大工具。该软件能够帮助用户在电脑上实现对声音的精细调整和处理,从而达到优化音响效果的目的。它提供了一系列专业级别的音频处理功能,包括但不限于均衡器(EQ)调节、混响效果设置、动态处理以及声音美化等。 对于音响爱好者而言,海媚EX-8效果器电脑调音软件能够使得他们更加便捷地进行个人音响系统的声音调校,让音乐播放更加符合个人的听觉偏好。例如,用户可以根据个人喜好调整均衡器,增强或减弱某些频率范围的声音,以获得更加饱满或平滑的音乐质感。 对于音频制作的专业人士来说,这款软件的高级功能则显得尤为重要。他们可以利用这款软件进行细致入微的音效调整,比如使用混响效果来模拟不同的声音环境,或者是通过动态处理来控制音乐的响度和攻击性。这样的处理可以使得音频作品达到更加专业的水平,无论是用于现场表演还是音频录制,都能够获得令人满意的音响效果。 海媚EX-8效果器电脑调音软件内置了直观的操作界面,使得即使是初学者也能够迅速上手,并开始尝试各种调音操作。软件可能包含预设的调音方案,供用户选择和参考,同时也支持用户自定义设置,满足更个性化的需求。此外,由于它是一个电脑程序,用户还可以方便地通过互联网寻找更多的调音资源和教程,进一步提升自己的调音技巧。 值得一提的是,海媚EX-8效果器电脑调音软件还可能支持多种音频格式,这意味着用户可以处理不同来源和质量的声音文件,保证了软件的通用性和实用性。无论用户是想要对高质量的录音文件进行后期处理,还是调整日常听歌的体验,这款软件都能够提供强大的支持。 在使用海媚EX-8效果器电脑调音软件时,用户需要确保他们的电脑系统满足软件的运行要求,比如拥有足够性能的CPU和充足的内存空间,以及兼容的音频接口设备。正确的安装和设置是确保软件能够稳定运行和发挥其全部功能的前提。 海媚EX-8效果器电脑调音软件是一款功能丰富、操作简便的音频处理工具,它不仅能够为音响爱好者带来更好的听音体验,同时也为专业音频制作人士提供了专业的调音解决方案。通过这款软件,用户可以实现从基本的声音调整到复杂音效处理的全方位需求,无论是个人娱乐还是专业音频制作,都能获得出色的音质和效果
2025-05-19 07:52:22 2.9MB
1
内容概要:本文围绕智能评阅算法的效果展开综合评价,背景为中国将人工智能确立为核心发展领域,特别是在教育考试的人才选拔方面,提出了智能评阅系统的创新模式。文章详细介绍了某实验室采用“一人工+双AI”协同机制进行评分的研究成果,即通过两种智能算法背对背评分并与人工评分交叉验证,以确保评分质量和效率。基于附件提供的具体数据,要求建立数学模型来分析不同评阅方式的数据分布特点,构建智能评阅算法的评价指标体系并设计综合评价模型,同时针对不同学科维度展开评阅效果的对比分析。最后,根据给定的误差阈值等条件,设计并评估了两类人工智能算法的应用方案。; 适合人群:对教育信息化、智能评分系统感兴趣的教育工作者、研究人员以及相关领域的研究生或高年级本科生。; 使用场景及目标:①理解智能评阅系统的最新进展及其在教育领域的应用;②掌握如何基于实际数据构建评价模型和指标体系;③学习如何设计并评估智能评阅算法的具体实施方案。; 其他说明:本文不仅提供了理论指导,还附带了具体的数据集(附件1、2、3),便于读者进行实证研究和模型测试。建议读者在学习过程中结合附件数据进行实践操作,以加深对智能评阅算法的理解。
2025-05-17 16:54:55 17KB 人工智能 教育技术 数学建模
1
基于传统图像分割方法的Matlab肺结节提取系统:从CT图像分割肺结节并评估分割效果,附GUI人机界面版本及主函介绍,Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。 ,核心关键词: Matlab; 肺结节分割; 肺结节提取; 源程序; GUI人机界面; 传统图像分割; 非深度学习方法; LIDC-IDRI数据集; 读取图像; 图像增强; Gam
2025-05-16 22:21:33 312KB scss
1