通过视觉惯性数据融合进行室内导航 这是以下论文的代码: Farnoosh,A.,Nabian,M.,Closas,P.,&Ostadabbas,S.(2018年4月)。 通过视觉惯性数据融合进行第一人称室内导航。 在位置,位置和导航专题讨论会(PLANS)中,2018 IEEE / ION(pp.1213-1222)。 IEEE。 联系人 , 内容 1.要求 这段代码是用MATLAB R2016b编写的 2.用于收集视频-IMU的iPhone应用程序 联系 ,请求访问我们的iPhone应用程序以收集频率可调的同步视频和IMU数据 2.样本视频 本文中用于实验的走廊的原始视频以及通过我们的iPhone App收集的IMU测量值都包含在./sample_video/目录中。 3.走廊视频的运行代码 运行demo_vpdetect_modular.m 此代码包含以下部分: 阅读整个视频
2023-04-06 21:20:40 8.75MB MATLAB
1
对当前数据融合方法的一个综述,描述的各种方法的优缺点,并列举了相关的应用
2023-04-04 15:40:20 295KB 机器学习
1
红外光谱数据融合对美味牛肝菌产地鉴别.pdf
1
D-S证据理论的融合思想主要体现在待识别对象的多个证据的基本概率分配函数通过某种规则融合在一起,求出所有证据的总支持程度,证据理论给出了多源数据的组合规则
1
数据融合matlab代码 TristanHuang 个人介绍 2019届毕业研究生-黄美川 :e-mail: 联系方式: :laptop: 个人主页: :octopus: Github: 硕士期间主要工作 读研期间,除了完成既有课程之外,也积极参与到实验室的项目开发中。 1.定位结果的手机终端显示 主要是完成定位结果在手机上的实时显示任务,场景主要有工控新楼 5 楼,新楼 511 室内和教九 526 装修前。 2.免时钟同步、交互式声信号室内定位系统 利用 BeepBeep 原理,建立一种免时钟同步的声信号室内定位系统。具体的原理可以参看实验室往届师兄的毕业论文(文祥计、林峰)。系统主要分为两部分,一部分是声信号信标节点(Android 系统的 smartphone 或者 树莓派),另一部分是待定位目标,即用户的手机。目前需要工作在同一局域网下。 由于适应比赛场地多楼层的需要,将节点网络设置成了两组,与用户交互的信标节点分别是 5 号点和 10 号点,该定位算法需要预知每个点与这两个点之间的距离,需要在实验前测量好并输入进去。楼层的切换导致交互节点的切换,楼层的判别由手机上的气压计变动所决定,在实验前,需设置好各楼层的气压值。
2023-03-26 00:02:27 5KB 系统开源
1
数据融合matlab代码多模式精神工作量评估信号处理 此存储库包含用于处理生理多模态信号和从中提取特征的代码,如在SMC 2020上发表的题为“使用多传感器融合进行体育活动期间运动伪像-鲁棒性精神工作量评估”的论文中所述 预处理代码 这些是在matlab中实现的。 使用的信号:呼吸,心电图,血容量脉冲,皮肤电React和温度。 呼吸: 用于数据收集的设备:Bioharness 3 从18Hz到6Hz的数据下采样 使用IIR滤波器的低通滤波(<2Hz) 心电图(ECG) 用于数据收集的设备:Bioharness 3 使用五阶IIR滤波器的带通滤波(5Hz-25Hz) 使用基于能量的QRS检测算法提取RR系列(使用MHRV工具箱) 血容量脉冲(BVP) 使用Empatica E4收集的数据 使用五阶IIR滤波器的带通滤波(8Hz-30Hz) 皮肤电React(GSR) 使用Empatica E4收集的数据 下采样至4Hz 随后是分离相成分和补品成分 使用带五阶IIR滤波器的带通滤波器(0.1Hz-1Hz)完成 皮肤温度 使用Empatica E4收集的数据 带有40阶FIR滤波器的低通滤波
2023-03-06 15:27:30 24KB 系统开源
1
数据融合matlab代码CoSpace:从高光谱-多光谱对应中学习常见子空间 洪丹凤,横田直人,乔瑟琳·尚努索,朱孝祥 此工具箱中的代码实现。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 @article{hong2019cospace, title = {Co{S}pace: Common Subspace Learning from Hyperspectral-Multispectral Correspondences}, author = {D. Hong and N. Yokoya and J. Chanussot and X. Zhu}, journal = {IEEE Trans. Geosci. Remote Sens.}, volume = {57}, number = {7}, pages = {4349--4359}, year = {2019}, publisher = {IEEE} } 系统特定说明 该代码已在Windows 10计算机上的Matlab R2016a或更高版本中进行了测试。 如何使用它? 直接运行demo.m来复
2023-03-06 12:59:39 6.66MB 系统开源
1

给出一种新的神经网络——粗神经网络结构, 并给出了基于粗神经网络的多传感器数据融合
模型, 阐述了用于数据融合的粗神经网络的结构和训练方法。分析和仿真结果表明, 新模型不仅能解决
传统模型所能解决的问题, 而且能解决传感器输出为二值或一个范围的多传感器数据融合问题。

1
数据融合matlab代码MNIST-NET10 这种复杂的异构融合由两个异构集合FS1和FS2组成: 可以使用以下代码构建#FS1(CapsNet | MCDNN | DropConnect_2 | CapsNet | MCDNN | DropConnect_1 | DropConnect_2 | Network3 | Dropconnect_2): 预先训练的CapsNet可从以下网站下载: MCDNN网络是从以下站点获得的: 具有数据增强功能的Network3(请参阅Network3.py) 具有数据增强功能的DropConnect(请参阅DropConnect.py) 可以使用以下代码构建#FS2(ECOC | PrE | MLP→LS | MLP): CapsNet作为来自以下方面的数据转换器: 所需的代码(在Matlab中)可从以下位置获得: 可以从以下链接下载本文:
2022-12-28 21:18:15 7KB 系统开源
1
无线传感器网络及其数据融合的研究,章芬,,随着智能化、网络化传感器技术的日益成熟,具有潜在的巨大应用价值的无线传感网络引起人们的重视与研究。文章介绍了无线传感器网
2022-12-02 11:10:33 208KB 无线传感器网络
1