【R054】陆奇博士主题分享:理解新范式,拥抱新时代,把握新机会【奇绩创坛 (3.27 内部)】.pdf
2025-09-28 08:43:50 16.18MB
1
最新版(第二版)新视野大学英语听说教程book3全部答案
2025-09-26 16:03:45 216KB
1
内容概要:本文系统性地介绍了MCP(Memory-Centric Planning,记忆中心化规划)范式的核心概念、技术架构和开发流程。MCP范式旨在解决传统AI Agent(规则驱动型和数据驱动型)在灵活性、规划能力和场景适应性方面的不足。它通过将长期记忆和短期记忆结合,实现实时推理和策略调整,并采用模块化架构(感知、记忆、规划、执行)。文章详细讲解了基于Python的MCP开发入门,包括搭建记忆模块、构建规划模块和整合执行闭环。最后,通过智能客服、自动驾驶和金融分析三个行业的实战案例,展示了MCP范式在多场景下的应用效果和优势,如用户满意度提升、行驶安全性和收益率提高等。; 适合人群:对AI Agent开发感兴趣的初学者以及有一定编程基础的研发人员。; 使用场景及目标:①理解MCP范式的原理和优势;②掌握基于Python构建MCP Agent的具体步骤;③学习MCP范式在不同行业场景中的应用实践。; 其他说明:本文不仅提供了理论知识,还结合实际案例进行讲解,建议读者跟随文中提供的代码示例进行实践操作,以便更好地理解和掌握MCP范式的开发方法。
2025-09-26 12:46:36 5KB AI Agent Python
1
(1)记录方法 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Record Start,开始记 录宏命令; 执行要用宏命令完成的所有操作; 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Record Stop,停止记 录宏命令。 (2)记录宏命令的回放 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Execute Recorded Macro,可以回放记录的宏命令。 (3)宏命令的保存 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Record/Replay > Write Recorded Macro, 可以保存记录的宏命令。 此时记录的宏命令为 macro.cmd,为避免被覆盖,应该改变其名称。 2. 宏命令编辑器 宏命令编辑器可以对记录的宏命令和读入的命令文件进行编辑,它同时也可以创建宏命 令。 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Edit > New(Modify),可以创建或修 改宏命令。 宏命令编辑器如图 5 � 5 所示。如果创建新的宏命令,应该在“Macro Name”栏中输入 宏命令的名称;在“Command”栏中定义宏命令的命令,也可以使用宏命令的名字作为命令 (选择 Use Macro Name);定义是否采用单步回复修改命令,通常选“yes”;按“OK”, 完成宏命令的创建。 图 5 � 5 宏命令编辑器 图 5 � 6 读入宏命令对话窗 3. 输入命令文件 在 ADAMS/View 菜单栏中,选择 Tools > Macro > Read,系统弹出读入宏命令对话窗, 如图 5 � 6 所示。 在“Macro Name”栏中输入要保存为宏命令的名字;在“File Name”栏中输入要调入的 命令文件;在“User Entered Command”栏中定义宏命令的命令字符串;定义“undo”命令, 通常选“yes”;定义“help”内容;定义“Create Panel”内容,通常选“no”;按“OK”, 输入宏命令。
2025-09-23 21:17:56 5.97MB
1
为了实现单目视觉系统的快速、精确的手眼标定, 本文提出了一种新的两步式手眼标定方法, 将手眼标定分为求解旋转关系和平移关系两步. 首先机器人携带标定板进行两次平移运动求解旋转关系, 然后机器人工具坐标系执行若干次旋转运动求解平移关系. 该方法简单快速, 不需要昂贵的外部设备, 通过实验最终验证了该方法的可行性.
2025-09-22 16:53:28 1.48MB 机器视觉 工业机器人
1
ESP32-C6是一款集成了多种无线通信技术的芯片,其模块ESPC6-WROOM-32以2.4GHz Wi-Fi 6、BLE5.0和802.15.4协议为主要功能,支持Wi-Fi、蓝牙、IEEE 802.15.4等无线通信技术,适用于各类智能设备与家居产品的开发与集成。 该模块拥有RISC-V单核微处理器,运行频率可达160MHz,并具备320KB的ROM与512KB的HP SRAM以及16KB的LP SRAM。在无线通讯方面,其Wi-Fi特性支持IEEE 802.11 b/g/n/ax标准,工作频率范围为2412 ~ 2484 MHz,支持1T1R模式,数据传输率最高可达150 Mbps,并且支持TX/RX A-MPDU、TX/RX A-MSDU和Immediate Block ACK等功能。 蓝牙方面,ESPC6-WROOM-32支持蓝牙5.0版本,提供高达2Mbps的数据传输速率,并具备广告扩展、多广告集及通道选择算法#2等特性。对于IEEE 802.15.4协议的支持意味着该模块可用于Thread 1.3和ZigBee 3.0等低功耗网络的构建。 在接口方面,该模块提供了包括GPIO、I2C、I2S、SDIO、TWAI (CAN 2.0)、SPI、EN、MCPWM、ADC以及LED PWM在内的多种外围接口,以满足不同应用的需求。此外,该模块具有较宽的-40℃至85℃的使用温度范围,适合于各种环境。 ESPC6-WROOM-32模块的应用领域广泛,包括串行透明传输、Wi-Fi探测器、智能电源插头/智能LED灯/智能家居、摄像头产品、传感器网络、OTT设备、无线位置系统信标和工业现场总线等。 此外,模块的结构设计包括了多种闪存类型与天线配置选项,如ESPC6-WROOM-32-N4、ESPC6-WROOM-32-N8和ESPC6-WROOM-32-N16,分别配备了32M bit、64M bit和128M bit的闪存,以适应不同级别的存储需求。 模块的更新记录显示,最新版本为V1.0,并且是在2024年2月20日发布的。具体的用户手册详细介绍了模块的特性、接口定义、尺寸与布局等重要信息,为开发者和使用者提供了详尽的技术参考。 基于ESP32-C6的Matter over Thread天窗控制器是智能家居领域的一个突破性产品,它整合了多种先进技术,为智能家居系统提供了全新的控制和通信方式,从而推动智能家居体验的升级和革新。
2025-09-22 09:00:19 1.63MB
1
新酷卡猫池软件 对接助手软件 <1> 基本功能短信,彩信,语音,改码。 <2> 可支持市场上全部设备。 <3> 软件目前最多支持128路,如有需求,可继续扩展。 <4> 软件支持所有平台对接。 <5> 软件使用稳定,采用VS 2012平台 MFC框架开发。 <6> 软件支持各种接口扩展使用,支持http,mysql,socket等。 <7> 软件可以使用卡池,配置简单,全自动换卡执行任务。 <8> 用户可以根据自己的需求定制软件的开发。
2025-09-22 00:01:13 20.35MB
1
天线一信号收发的重要关卡天线的应用包括基站侧与终端侧,而无论在哪侧,天线都是信号发射与接收的关卡,天线性能的好坏,直接影响通信的质量。终端天线用于无线电波的收发,连接射频前端,是接收通道的起点与发射通道的终点。基站天线与终端天线相似,也是信号的转换器,但基站天线连接基站设备与终端用户。
2025-09-21 17:16:59 2.89MB
1
【网络安全技术与实践--第7章-数字签名(新).pptx】 数字签名是一种在网络通信中确保信息完整性和发送者身份认证的技术。它在互联网安全领域扮演着至关重要的角色,尤其是在涉及金融交易、合同签署等敏感操作时。本章主要探讨了数字签名的基本概念、不同签名体制以及其与消息认证和公钥加密的区别。 1. **数字签名的基本概念** - **R1-条件**:接收方能验证发送方的签名,不能伪造。 - **S-条件**:发送方一旦签名,无法否认消息的发送。 - **R2-条件**:接收方收到签名消息后,不能否认接收行为。 - **T-条件**:第三方能确认收发双方的消息交换,但不能伪造这个过程。 - **数字签名与消息认证的区别**:消息认证主要用于防止第三方篡改,而数字签名则提供了更高级别的保障,包括消息来源真实性和不可否认性。 2. **数字签名与公钥加密的区别** - **公钥加密**:A使用B的公钥加密信息,B使用私钥解密,保证了消息的私密性。 - **数字签名**:A使用私钥对消息签名,B用A的公钥验证签名有效性,关注的是消息的完整性和发送者的身份。 3. **数字签名的分类** - **按消息处理方式**:可对整个消息签名,或对压缩消息签名。 - **按签名特性**:确定性签名(签名固定),随机化签名(每次签名可能不同)。 4. **签名体制的构成** - **签名算法**:用于创建签名的秘密算法。 - **验证算法**:公开的算法,用于验证签名的合法性。 5. **签名体制的数学表示** - 使用明文、签名、密钥空间和验证函数的值域来描述签名体制。 6. **RSA数字签名体制** - RSA体制基于两个大素数的乘积,使用私钥签名,公钥验证。 - 安全性依赖于素数分解的难度,使得他人难以伪造签名。 7. **Rabin签名体制** - Rabin签名体制同样基于两个大素数的乘积,但签名过程和验证过程略有不同。 - 它的安全性也依赖于素数分解问题。 此外,章节还提到了其他签名体制如ElGamal、Schnorr、DSS、ESIGN、Okamoto等,这些体制各有特点,适用于不同的应用场景。数字签名技术的应用广泛,包括电子邮件、电子商务、软件完整性验证等,它们都离不开数字签名技术提供的安全保障。 在实际应用中,选择合适的签名体制需要考虑性能、安全性以及适用场景等因素。随着技术的发展,数字签名技术也在不断演进,以应对日益复杂的安全挑战。
2025-09-19 22:08:27 607KB
1
新版网优图层工具V3.0.exe
2025-09-19 16:04:50 784KB
1