本数据集包含了大约1.3w条豆瓣短评,长评,微博,猫眼相关数据集的汇总,可用作电影情感分析,预测等任务,包含情感分类标签,(请注意:数据集中并非全部标签都为真实标签,由于一些评论缺失情感分类,因此使用了深度学习方式填充了标签,因此此数据集无缺失值。 属性说明: Comment:评论内容 Sentiment:情感分类,1-5,分别代表最差到最好 Datetime:评论发出时间 Location:评论发出地点 具体数据集样例: --------------------------------------------------------------------------------------------------------------------- Comment Sentiment Datetime Location 电影好好看,下次最来看一次,哪吒的语言太好听了。 2 2025/4/18 23:03 成都 好看,喜欢,非常喜欢 2 2025/4/18 23:02 崇州 ---------------------------------------------------------------------------------------------------------------------
2025-06-16 16:56:18 3.15MB 情感分类 数据集 深度学习
1
python基础、机器学习、深度学习代码
2025-06-15 19:31:14 11.13MB
1
房价预测系统是一种利用机器学习或深度学习技术对房地产市场价格进行预测的系统。这类系统通常基于大量的历史房价数据,通过构建预测模型,来推算未来或未经交易的房产价格。本压缩包包含了完整的代码和数据,可用于实际应用开发或学习研究。 在本压缩包中,我们能找到包含实际交易数据的文件,例如“房价数据.csv”和“anjuke_house_prices.csv”,这些文件中包含了不同房产的特征数据如位置、面积、建造年份以及成交价格等,是构建房价预测模型的重要依据。此外,还包含了一些模型文件,如“knn_model.pkl”,这表明使用了k-最近邻算法(K-Nearest Neighbors, KNN)构建的预测模型,而“BP_NN_Prediction_vs_True.png”和“knn_Prediction_True.png”则可能是展示了不同模型预测结果与实际成交价格的对比图像,帮助我们评估模型的准确性。 “BP_NN_Loss.png”文件则可能展示了使用了反向传播算法的神经网络(Back Propagation Neural Network, BP NN)在训练过程中的损失值变化,这有助于分析模型在学习过程中的表现,从而对模型进行优化。另外,代码文件“房价预测新版.py”可能是主要的预测脚本,用于执行预测任务和输出结果。而“对比实验-逻辑回归.py”和“对比试验-随机森林.py”则是对不同机器学习算法进行测试和比较的脚本,通过这些对比可以了解不同算法在房价预测任务中的优势和局限性。 此压缩包提供了一套完整的房价预测系统开发资源,包括数据集、模型文件、可视化图表和源代码,适用于机器学习和深度学习的研究和实践。通过这些资源,开发者不仅可以深入理解房价预测问题,还能够学习到如何使用机器学习方法解决实际问题,特别是如何在处理回归问题时选择合适的模型,以及如何评估和比较不同模型的性能。
2025-06-13 13:31:40 452KB 房价预测 机器学习 深度学习
1
Transformer翻译模型是现代自然语言处理领域的一个里程碑式创新,它由Vaswani等人在2017年的论文《Attention is All You Need》中提出。这个模型彻底改变了序列到序列学习(Sequence-to-Sequence Learning)的方式,特别是机器翻译任务。在本资料"基于TensorFlow的Transformer翻译模型.zip"中,我们将会探讨如何利用TensorFlow这一强大的深度学习框架来实现Transformer模型。 Transformer的核心思想是使用自注意力(Self-Attention)机制代替传统的循环神经网络(RNN)或卷积神经网络(CNN),这样可以并行处理序列中的所有元素,大大提高了计算效率。Transformer模型由多个称为“编码器”(Encoder)和“解码器”(Decoder)的层堆叠而成,每一层又包含多头自注意力(Multi-Head Attention)和前馈神经网络(Feed-Forward Neural Network)等组件。 在TensorFlow中实现Transformer,首先需要理解以下几个关键概念: 1. **位置编码(Positional Encoding)**:由于Transformer没有内在的顺序捕获机制,因此引入了位置编码,它是一种向量形式的信号,以独特的方式编码输入序列的位置信息。 2. **自注意力(Self-Attention)**:这是Transformer的核心组件,允许模型在计算每个位置的表示时考虑到所有位置的信息。通过计算查询(Query)、键(Key)和值(Value)的内积,然后通过softmax函数进行归一化,得到注意力权重,最后加权求和得到新的表示。 3. **多头注意力(Multi-Head Attention)**:为了捕捉不同位置之间的多种依赖关系,Transformer采用了多头注意力机制,即将自注意力操作执行多次,并将结果拼接在一起,增加了模型的表达能力。 4. **前馈神经网络(Feed-Forward Neural Network)**:在自注意力层之后,通常会有一个全连接的前馈网络,用于进一步的特征提取和转换。 5. **残差连接(Residual Connections)**和**层归一化(Layer Normalization)**:这两个组件用于加速训练过程,稳定模型的梯度传播,以及帮助缓解梯度消失问题。 6. **编码器和解码器结构**:编码器负责理解和编码输入序列,而解码器则负责生成目标序列。解码器还包含一个额外的遮罩机制,防止当前位置看到未来位置的信息,以满足机器翻译的因果性需求。 在JXTransformer-master这个项目中,开发者可能已经实现了Transformer模型的完整流程,包括数据预处理、模型构建、训练、评估和保存。你可以通过阅读源代码来深入理解Transformer的内部工作原理,同时也可以尝试调整超参数,以优化模型性能。这将是一个绝佳的学习和实践深度学习与自然语言处理技术的机会。 TensorFlow为实现Transformer提供了一个强大且灵活的平台,它使得研究人员和工程师能够轻松地探索和应用这一革命性的模型。通过深入研究这个项目,你不仅能够掌握Transformer的理论,还能积累实践经验,这对于在人工智能和深度学习领域的发展是非常有价值的。
2025-06-12 22:56:53 42.33MB 人工智能 深度学习 tensorflow
1
在本项目中,我们将探讨如何使用TensorFlow框架构建一个手写数字识别模型,该模型以MNIST数据集为训练基础,并能通过调用摄像头API实时识别图像中的数字。MNIST数据集是机器学习领域的经典入门数据,包含了0到9的手写数字图像,非常适合初学者进行图像分类任务的实践。 我们需要了解**MNIST数据集**。MNIST是由LeCun等人创建的,包含60000个训练样本和10000个测试样本。每个样本都是28x28像素的灰度图像。数据集分为训练集和测试集,用于评估模型的性能。 接下来,我们要涉及的是**TensorFlow**,这是一个由Google开发的开源库,主要用于构建和训练机器学习模型。TensorFlow使用数据流图来表示计算过程,节点代表操作,边则表示数据。它支持广泛的机器学习算法,包括深度学习,我们的项目将使用其进行神经网络建模。 在构建模型时,我们通常会采用**卷积神经网络(Convolutional Neural Network,CNN)**。CNN在图像识别任务中表现卓越,因为它能够自动学习图像的特征,如边缘、纹理和形状。对于MNIST数据集,一个简单的CNN架构可能包括一到两个卷积层,每个后面跟着池化层以减小尺寸,然后是全连接层用于分类。 训练模型时,我们可能会使用**梯度下降(Gradient Descent)**优化器和**交叉熵损失函数(Cross-Entropy Loss)**。梯度下降是一种求解最小化问题的方法,而交叉熵损失函数在分类问题中常见,衡量预测概率分布与实际标签之间的差异。 在模型训练完成后,我们可以通过调用**摄像头API**将模型应用于实时场景。这通常涉及到捕获图像、预处理(如调整大小、归一化等)以适应模型输入,然后将图像传递给模型进行预测。在这个过程中,可能会用到Python的OpenCV库来处理摄像头流。 为了提高模型的实用性,我们可以考虑引入**批量预测(Batch Inference)**,一次处理多个图像,以提高效率。此外,使用**滑动窗口(Sliding Window)**技术可以在图像中检测多个可能的数字区域,从而实现对一个或多个数字的识别。 在Numbers-Recognition-master这个项目文件中,应该包含了以下内容:源代码(可能包括数据预处理、模型构建、训练、测试和摄像头应用部分)、配置文件(如超参数设置)、以及可能的示例图像或日志文件。通过阅读和理解这些文件,你可以更深入地学习如何在实践中应用TensorFlow解决手写数字识别问题。
2025-06-12 22:39:15 46.81MB 人工智能 深度学习 tensorflow
1
随着人工智能技术的快速发展,深度学习在医学图像分析领域展现出巨大的应用潜力。在本项目中,我们关注的是骨龄检测识别系统的开发,该系统基于深度学习框架PyTorch实现,采用Pyside6进行图形用户界面设计,而YOLOv5模型则作为主要的骨龄检测识别算法。YOLOv5是一种先进且快速的对象检测算法,它能够实时高效地识别和定位图像中的多个对象。在本系统的构建过程中,YOLOv5模型将被训练用于识别儿童手腕X光图像中的骨骼特征,并据此推断出相应的骨龄。由于骨龄是评估儿童和青少年生长发育的重要指标,因此该系统在儿科医学诊断中具有重要的应用价值。 在本系统的开发过程中,项目使用了多个文件来维护和说明。其中,CITATION.cff文件用于规范引用格式,以便其他研究者可以准确引用本项目的研究成果。.dockerignore、.gitattributes、.gitignore文件则涉及项目版本控制和容器配置,这些文件用于设置哪些文件应被版本控制系统忽略或特殊处理。tutorial.ipynb文件是一个交互式的Python笔记本,可能包含了使用本系统进行骨龄检测识别的教程或示例代码,这对学习和使用本系统具有实际指导意义。 此外,项目中还包括了一个图片文件555.jpg,虽然具体内容未知,但根据命名推测,它可能被用作YOLOv5模型训练或测试中的样本图像。LICENSE文件包含了本项目所采用的开源许可证信息,它对项目如何被使用、修改和重新分发做了规定。README.zh-CN.md和README.md文件分别为中文和英文版本的项目说明文档,它们提供了关于项目的详细信息和使用指南。CONTRIBUTING.md文件用于指导其他开发者如何为本项目贡献代码,这是开源文化的重要组成部分。 本项目是一个高度集成的系统,它将深度学习、图像识别和友好的用户界面完美结合,为医学影像分析领域提供了一种新颖的解决方案。通过使用YOLOv5模型,系统在骨龄检测方面展现出了高效的性能和准确的识别效果。与此同时,系统的设计充分考虑了实用性、可扩展性和开放性,它不仅能够满足专业人士的需求,同时也为开发者社区提供了一个可供贡献和改进的平台。
2025-06-10 21:39:43 406.37MB python 图像识别 yolo 深度学习
1
基于深度学习的图像识别:猫狗识别 一、项目背景与介绍 图像识别是人工智能(AI)领域的一项关键技术,其核心目标是让计算机具备像人类一样“看”和“理解”图像的能力。借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。猫狗识别的实际应用场景 该模型由两层卷积层和两层全连接层组成,主要用于图像分类任务。 第一层卷积层: 将输入的224×224×3图像通过3×3卷积核映射为112×112×16的特征图。 第二层卷积层: 将特征图进一步转换为 56×56×32。 池化层: 每层卷积后均接一个2×2的最大池化层,用于减少特征图的空间维度。 全连接层:第一层全连接层将向量映射。 第二层全连接层输出对应类别的概率分布(由 num_classes 决定)。 激活函数:使用ReLU作为激活函数。该模型具备较低的参数量,适用于轻量级图像分类任务。
2025-06-09 12:24:39 416KB 实验报告 深度学习 python
1
讲解分为8章: 01 深度学习的简介 02 深度学习的历史进程 03 深度学习的主要技术 04 深度学习的应用实例 05 深度学习的挑战与问题 06 深度学习的未来趋势 07 深度学习的学术影响 08 深度学习的行业影响
2025-06-09 09:16:46 7.19MB 深度学习
1
借助深度学习、卷积神经网络(CNN)等先进算法,图像识别技术实现了从图像信息的获取到理解的全面提升。近年来,这一技术已在医疗、交通、安防、工业生产等多个领域取得了颠覆性突破,不仅显著提升了社会生产效率,还深刻改变了人们的生活方式。葡萄叶片识别的实际应用场景。 1. 农业生产与种植管理 葡萄叶识别技术可以帮助农民快速、准确地识别葡萄的品种和生长状态。通过分类不同种类的葡萄叶,农民可以优化种植策略,合理分配资源(如肥料和水分),从而提高葡萄的产量和品质。此外,该技术还可以用于监测葡萄植株的生长周期,指导科学化管理。 2. 病虫害检测与诊断 通过对葡萄叶的图像进行分析,葡萄叶识别技术可以检测出叶片上是否存在病害或虫害的特征。例如,可以识别霜霉病、白粉病等常见葡萄病害的早期症状,及时提醒农民采取防治措施。这种技术可以大幅减少农药的使用量,提高生态友好性。 3. 食品加工与质量评估 在食品加工行业,葡萄叶是某些传统美食(如中东的葡萄叶包饭)的关键原料。葡萄叶识别技术可以用于区分不同品种的叶片,以确保其口感、大小和质量符合加工要求,从而提升加工产品的一致性和市场竞争力。 4. 葡萄品种的保护与追溯
2025-06-08 16:22:24 65.16MB 数据集 人工智能 图像分类
1
【深度学习】是一种人工智能领域的核心技术,它模仿人脑神经网络的工作方式,通过大量数据的训练来自动学习特征,实现模式识别、图像分类、自然语言处理等任务。在本项目“西农20级计算机前沿大作业”中,你将深入理解和应用深度学习,特别是与论文解读和实际编程实践相关的部分。 论文解读是深度学习研究的关键步骤,它涉及阅读和理解最新的学术文献,了解研究人员如何提出新的模型、优化算法或解决特定问题。在你完成的作业中,可能包括了对某个或多个深度学习模型的分析,如卷积神经网络(CNN)、循环神经网络(RNN)或Transformer等。这些模型在图像识别、语音识别、自然语言处理等领域有着广泛应用。 例如,"RepPoints"和"OrientedRepPoints"是深度学习在目标检测领域的两个创新方法。RepPoints是一种点集表示的物体检测框架,它用一组可变形的点来描述物体的形状,这些点在检测过程中可以自由调整,增强了模型对不同形状和尺度物体的适应性。OrientedRepPoints则在此基础上进一步改进,不仅考虑了物体的位置,还考虑了物体的方向信息,尤其适用于处理带有方向性特征的目标,如车辆、飞机等。 在源码实现部分,你可能需要利用Python和深度学习框架,如TensorFlow或PyTorch,将论文中的理论转化为实际的代码。这包括数据预处理、模型构建、训练过程、损失函数定义和优化器选择等环节。通过编程,你可以直观地理解模型的工作原理,并验证其在实际数据上的性能。 此外,深度学习项目通常需要大量的计算资源,你可能需要掌握如何使用GPU进行加速计算,以及如何在分布式环境中并行训练模型。同时,版本控制工具如Git的使用也至关重要,它能帮助你管理代码版本,方便团队协作和后期问题追踪。 "西农20级计算机前沿大作业"涵盖了深度学习的理论与实践,通过这个项目,你不仅深化了对深度学习模型的理解,还提升了实际编程和项目管理的能力。这对你未来在AI领域的研究或工作都将打下坚实的基础。
2025-06-07 16:25:10 16.3MB 深度学习
1