YOLOv11是YOLO系列算法的最新版本,这一系列算法在目标检测领域以其独特优势取得了显著地位。YOLO算法的核心在于其单阶段检测模式,它通过将输入图像划分为网格,并让每个网格单元预测多个边界框及其相应的类别概率,极大地提升了检测速度并实现了端到端的检测流程。这种简洁高效的方法不但提高了实时目标检测的可能性,还为计算机视觉领域带来了新的活力。 自YOLOv1诞生以来,其后续版本的迭代表现了YOLO系列的创新力和生命力。YOLOv2引入了锚框机制,提升了目标检测的召回率;YOLOv3通过使用多个尺度的预测层优化了对不同大小目标的检测效果;YOLOv4整合了众多技术成果,在性能上取得了显著进步;YOLOv5则在保持速度的同时提升了检测精度。这些迭代反映了YOLO系列不断适应新需求和挑战的能力。 YOLOv11的关键创新点包括网络架构升级、特征表示与融合、损失函数优化以及训练策略的创新。在架构方面,YOLOv11可能会探索混合架构,融合CNN和RNN或LSTM网络,以便处理包含时间序列信息的数据,从而提高对动态目标的检测和跟踪性能。此外,网络深度和宽度的动态调整机制可以根据数据复杂度和任务需求自动调整网络结构,避免过拟合或欠拟合问题。 特征表示与融合方面,YOLOv11可能会采用层次化特征重加权机制,根据不同层次特征的重要性为各层次特征赋予不同的权重,提高网络对目标的表示能力。跨模态特征融合机制则为处理多模态数据提供了可能,使模型能从不同模态中提取更丰富的信息。 损失函数的优化也是YOLOv11的一大亮点。它可能会采用联合优化损失函数,整合边界框损失、类别损失和置信度损失,平衡不同损失间的关系,提高整体性能。基于感知的损失函数则考虑人类的感知特性,对不同的检测误差施加不同的惩罚,以提高模型检测结果的质量。 在训练策略方面,YOLOv11可能会结合自监督预训练与有监督微调,以提高模型的泛化能力。此外,元学习的应用有助于超参数的优化,解决相关难题。通过在多个类似任务上训练,YOLOv11能够快速适应特定的目标检测任务。 YOLOv11以其创新的设计和优化,不仅有望进一步提高目标检测的速度和准确性,还可能在处理更复杂的检测任务方面开辟新的道路,极大地拓宽了YOLO算法的应用前景。
2025-05-23 08:55:01 338KB
1
YOLOv5的资源描述 YOLOv5是由Ultralytics公司开发和维护的一个先进的实时目标检测模型。它是YOLO(You Only Look Once)系列的第五个版本,相较于之前的版本,YOLOv5在速度和准确性上都有了显著的提升。 YOLOv5提供了10个不同版本的模型,这些模型在网络深度和宽度上有所不同,但整体结构相似。模型主要由以下几个部分组成: 输入端:使用了Mosaic数据增强方法,该方法通过随机裁剪、缩放和排列多张图片来丰富数据集,并增加小样本目标,提升网络训练速度。 Backbone:采用New CSP-Darknet53结构,用于提取图像特征。 Neck:使用FPN(特征金字塔网络)+PAN(路径聚合网络)的结构,融合不同尺度的特征,提升模型对多尺度目标的检测能力。 Head:采用YOLOv3的检测头,用于输出检测结果。 此外,YOLOv5还使用了多种训练策略,如CIoU loss(在DIoU loss的基础上增加了检测框尺度的损失)、多尺度训练、Warmup和Cosine学习率调度器、混合精度训练等,以进一步提升模型的训练速度和检测精度。 项目源码 ### YOLOv5概要介绍与分析 #### 一、YOLOv5概述 YOLOv5(You Only Look Once version 5)是由Ultralytics公司开发的一款高性能实时目标检测框架,它作为YOLO系列的最新迭代版本,在速度与准确度方面取得了显著的进步。相比于前几代YOLO模型,YOLOv5不仅提高了处理速度,同时也增强了检测精度,特别是在复杂场景下的多目标检测方面表现更为突出。 #### 二、YOLOv5的架构设计 ##### 2.1 输入端:Mosaic数据增强 YOLOv5在输入端采用了Mosaic数据增强技术,这是一种非常有效的增强方式,能够显著提升模型的泛化能力。Mosaic通过将四张图片按照随机的角度拼接在一起形成一张新的训练图片,这样既增加了训练数据的多样性,又保留了原始图片的信息。这种方式特别有助于改善模型对小目标的检测性能,因为小目标在拼接后的图像中可能会占据更大的比例。 ##### 2.2 Backbone:New CSP-Darknet53 YOLOv5的主干网络(Backbone)采用了改进版的CSP-Darknet53结构。CSP-Darknet53是在Darknet53的基础上引入了Cross Stage Partial Network (CSPNet)的概念,旨在减少计算量的同时保持足够的表达能力。这种结构通过分割主干网络为两个分支并重新连接的方式,有效地减少了网络参数数量,从而加速了训练过程。 ##### 2.3 Neck:FPN + PAN Neck层的作用在于融合不同层次的特征图,以提高模型对于不同尺寸目标的检测能力。YOLOv5采用了FPN(Feature Pyramid Networks)和PAN(Path Aggregation Network)相结合的设计。FPN通过自顶向下的路径添加横向连接来融合多尺度特征,而PAN则通过自底向上的路径加强低层次特征的信息传播,这两种结构结合可以更好地捕捉到不同尺度的目标特征。 ##### 2.4 Head:YOLOv3检测头 YOLOv5的检测头沿用了YOLOv3的设计,这是一个基于锚点(anchor boxes)的检测方法,通过在不同的尺度上设置多个不同大小的锚点来预测目标的位置和类别。这种方法能够很好地适应不同尺寸的目标,提高检测效率。 #### 三、YOLOv5的训练策略 YOLOv5除了在模型架构上有许多创新之外,在训练过程中也采用了多种优化策略来提升模型性能。 - **CIoU Loss**:在原有的IoU损失基础上加入了中心点距离和长宽比约束,使得模型更加关注检测框的几何形状,从而提高了检测框的回归精度。 - **多尺度训练**:为了使模型能够更好地适应不同尺寸的目标,YOLOv5采用了多尺度训练的方法,在不同的输入尺寸下进行训练,这有助于模型学习到更丰富的特征表示。 - **Warmup和Cosine学习率调度器**:Warmup策略是指在训练初期缓慢增加学习率,以避免模型在初始阶段更新过快导致梯度爆炸;Cosine学习率调度器则是在训练后期根据余弦函数逐渐减小学习率,帮助模型收敛到更好的解。 - **混合精度训练**:通过使用半精度浮点数(例如FP16)来进行计算,可以在不牺牲太多精度的情况下大幅加快训练速度,同时也能减少GPU内存占用。 #### 四、项目源码及使用 YOLOv5的源代码已经开源,并托管于GitHub平台([https://github.com/ultralytics/YOLOv5](https://github.com/ultralytics/YOLOv5))。该项目提供了完整的模型构建、训练、评估和部署流程。用户可以通过修改配置文件来调整训练参数,如学习率、批次大小等,以满足特定的需求。此外,项目中还包含了大量的文档和示例代码,这对于初学者来说是非常有帮助的,可以帮助他们快速上手并深入了解YOLOv5的工作原理和使用方法。 YOLOv5凭借其高效的速度和优秀的检测精度,在实时目标检测领域占据了重要的地位,成为了一个广泛使用的工具和技术栈。无论是对于学术研究还是实际应用,YOLOv5都展现出了巨大的潜力和价值。
2025-05-19 11:31:36 13KB 网络 网络 目标检测 数据集
1
数据集-目标检测系列- 沙发 检测数据集 sofa >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-05-17 17:35:22 7.29MB 目标检测 yolo python
1
内容概要:本文档详细介绍了基于YOLO8算法的计算机视觉目标检测系统的快速搭建和使用指南。从环境配置到代码实现,逐步引导用户通过Python实现目标检测功能。 适合人群:对目标检测技术感兴趣,具备基础Python编程能力的开发者。 能学到什么: ①如何配置和安装所需的Python环境和依赖包; ②使用YOLO8算法进行目标检测的核心代码逻辑; ③通过gradio和opencv2实现的前端界面交互。 阅读建议:此资源不仅提供了代码实现,还涉及了项目结构和功能模块的介绍,建议用户在阅读时结合实际代码进行实践,以深入理解目标检测系统的工作原理和应用场景。 当前版本相较于原版本https://download.csdn.net/download/weixin_44063529/89522762,新增了检测框、检测文字的显示定制化
2025-05-17 15:06:18 22.15MB 计算机视觉 目标检测
1
标签类别:names: ['bubble', 'petrol'] 资源文件内包含:资源图片数据集,YOLO格式的标注文件,data.yaml是数据集配置文件。 训练集和验证集已经完成划分!!! 道路油污识别是城市交通管理和环境保护中的重要任务。油污不仅影响道路的清洁度和美观度,还可能对车辆行驶安全构成威胁。然而,传统的油污检测方法主要依赖人工视觉检查,这种方法不仅耗时、成本高,而且结果的准确性和可重复性差。因此,开发一种自动化、智能化的油污识别系统显得尤为重要。 使用方法: 下载YOLO项目,在data目录下创建子文件夹:Annotations、images、imageSets、labels,将VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中。
2025-05-16 15:52:01 13.97MB 数据集 目标检测 深度学习 YOLO
1
[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别.docx
2025-05-16 10:57:40 3.96MB 数据集
1
数据集-目标检测系列- 坦克 检测数据集 tank >> DataBall 标注文件格式:xml 解析脚本地址: gitcode: https://gitcode.com/DataBall/DataBall-detections-100s/overview or github: https://github.com/TechLinkX/DataBall-detections-100s 脚本运行方式: * 设置脚本数据路径 path_data * 运行脚本:python demo.py 样本量: 105 目前数据集暂时在该网址进行更新: https://blog.csdn.net/weixin_42140236/article/details/142447120?spm=1001.2014.3001.5501
2025-05-15 16:37:09 4.61MB 数据集 目标检测 python
1
通过label 1.8.6编译生成在windows上可以运行的exe 博客地址:https://blog.csdn.net/yohnyang/article/details/145692283?spm=1001.2014.3001.5501 在深度学习和机器学习领域,目标检测是一项重要的任务,它旨在识别图像中的特定目标并定位其位置。随着技术的发展,出现了许多工具和软件来辅助研究人员和工程师进行目标检测的研究和应用开发。其中,LabelImg是一款广泛使用的图像标注工具,它可以帮助用户为训练数据集进行目标标注。通常情况下,LabelImg使用Python编写,但为了方便Windows系统的用户使用,一些开发者会将其编译成Windows可执行的exe文件。 本篇文章将介绍一个由LabelImg编译而成的目标检测工具,该工具是针对Windows操作系统优化的版本。具体来说,这个版本经过了特定的编译过程,使得用户无需安装Python环境或者配置复杂的开发环境即可直接在Windows系统上运行。这对于那些不熟悉编程环境设置的用户来说,无疑降低了使用门槛,极大地提高了工作效率和便利性。 这个工具的编译版本基于LabelImg 1.8.6,这是一个稳定的版本号,意味着它在功能和性能上已经得到了充分的测试和验证。用户可以通过上述提供的博客链接了解详细的编译过程和使用方法。博客中不仅介绍了如何生成可直接在Windows上运行的目标检测工具,还可能包含了一些使用技巧、常见问题解决方法以及优化建议等,为用户提供了一个全面的学习资源。 通过这个工具,用户可以轻松地在图像中绘制边界框并为不同的目标打上标签,这为机器学习和深度学习模型的训练提供了丰富的训练数据。在此过程中,用户需要标记出图像中的车辆、行人、动物等目标,并给这些目标贴上标签。有了足够数量的标注数据之后,就可以使用深度学习算法来训练模型,使其能够准确地识别出图像中的各种对象。 这个工具的开发和应用,大大简化了目标检测任务的数据准备阶段。这对于推动机器学习和深度学习技术在各个领域的应用具有重要的意义。比如,在自动驾驶领域,准确的目标检测能够帮助汽车识别路面上的行人、交通标志和其他车辆,从而提高驾驶的安全性;在医疗图像分析领域,精确的目标检测可以帮助医生更快地定位病变区域,对病情进行更加准确的诊断。 这个针对Windows系统的“目标检测+labelimg+windows直接可用版”工具,不仅降低了技术门槛,而且加速了机器学习和深度学习算法在现实世界问题中的应用进程,特别是在目标检测这个细分领域中发挥着重要作用。它体现了技术创新如何推动行业发展,简化复杂问题解决流程,并最终为社会带来福祉。
2025-05-10 21:25:59 39.54MB 目标检测 python 机器学习 深度学习
1
本数据集共包含照片5932张,共分为四类:Bacterialblight(白叶枯病)1584张,Blast(枯萎病、稻瘟病)1440张,Brownspot(褐斑病)1600张,Tungro(水稻东格鲁病)1308张。其中训练集(train):共4948张 ;测试集(val):共984张。 所有照片标签(.txt)均已手动标注,可直接放入YOLOV模型进行训练使用 整个项目地址:https://download.csdn.net/download/qq_63630507/89861781 近年来,随着深度学习技术的快速发展,目标检测算法在农业领域中识别作物病虫害的应用成为研究热点。在此背景下,一套精确的、标注完备的数据集对于训练高效的模型至关重要。本数据集针对水稻病虫害的识别问题,提供了丰富的训练和测试资源,旨在通过深度学习方法,特别是YOLOv5模型,提高水稻病虫害的检测精度和效率。 数据集详细分类为四类水稻病虫害问题,包括白叶枯病、枯萎病(稻瘟病)、褐斑病和水稻东格鲁病。每一种病虫害均有相应的高清图像进行记录,图片数量分别为1584张、1440张、1600张和1308张,总计5932张。这些图片涵盖了多种不同的农田环境和病虫害的外观形态,为模型提供了丰富的训练场景。 数据集被分为训练集和测试集两部分,其中训练集共4948张图片,用于模型的训练过程;测试集共984张图片,用于模型性能的验证和评估。通过这样的数据划分,研究者可以有效地测试模型在未知数据上的泛化能力。 所有图片都已经进行了详细的标注工作,对应的标签文件(.txt格式)已生成,这为直接利用YOLOv5模型进行训练提供了便利。标签文件中的信息严格对应图片中的目标,详细标注了水稻病虫害的位置和类别信息,确保了训练数据的质量和准确性。 数据集的共享方式为通过网络下载,提供了方便快捷的获取途径。整个项目的地址公布在互联网上,研究者可以根据提供的链接下载到完整的数据集,开始相关的模型开发和应用研究工作。 在人工智能与农业结合的领域,这类数据集的出现对于提高作物病虫害的监测能力具有重要意义。基于YOLOv5模型的水稻病虫害目标检测数据集不仅可以应用于学术研究,也可以在实际农业生产中得到应用,帮助农民及时发现病虫害,采取相应的防治措施,提高水稻的产量和质量。 数据集的构建基于大量的实地拍摄和收集工作,反映出当前农业信息化和智能化的发展趋势。利用先进的计算机视觉技术,配合深度学习算法,可以极大地提高病虫害检测的效率和精确度,减少人工检测的成本和时间,对实现智慧农业具有积极作用。随着技术的不断进步,未来在农业领域中将会有更多的应用场景被开发出来,进一步推动农业现代化的进程。同时,该数据集的成功构建和应用也将激励更多的人工智能技术和方法被引入到农业病虫害检测和管理中,以科技的力量促进农业生产的可持续发展。
2025-05-09 15:44:29 196.24MB 目标检测 数据集 yolov
1
本项目通过CPU共训练50轮,精度趋近于0.8。若想进一步提高精度,可增加数据集或增加训练轮数。 数据集地址:https://download.csdn.net/download/qq_63630507/89844778 在当前的智能化农业发展中,运用先进的图像识别和深度学习技术对农作物病虫害进行自动检测与诊断已经变得尤为重要。本项目聚焦于水稻病虫害的自动识别,采用的是目前较为先进的目标检测模型Yolov5。Yolov5作为一种基于深度学习的单阶段目标检测算法,以其运行速度快,检测精度高的特点,广泛应用于实时目标检测任务中。通过本项目的实施,旨在构建一个高精度的水稻病虫害智能识别系统。 在项目实施过程中,研究团队首先需要准备一个全面且高质量的水稻病虫害图像数据集。该数据集包含不同种类的水稻病害和虫害的图片,每张图片都应经过详细的标注,标注信息包括病虫害的类别及位置等,这为模型提供了训练的基础。通过数据集的准备,研究团队确保了模型训练有足够的信息去学习和识别各种病虫害特征。 考虑到计算资源和时间成本,项目选择了在CPU环境下进行模型训练,共计训练了50轮。尽管在计算能力有限的情况下,但通过精心设计的网络结构和合理的参数调整,模型的精度已经趋近于0.8,这是一个相对较高的准确率,表明模型在识别水稻病虫害方面已经具备了较好的性能。然而,项目报告也指出,若要追求更高的精度,可以考虑增加更多的数据集或延长训练轮数,以此来进一步提升模型的泛化能力和准确度。 项目最终构建的模型不仅能够帮助农民及时发现和处理病虫害问题,降低经济损失,还可以作为智能农业系统的一部分,实现对大规模种植区域的病虫害自动监测与预警。通过引入人工智能技术,不仅能够减轻农业工作者的负担,还能够提高作物的产量和品质。 在技术推广与应用方面,项目组还提供了数据集下载链接,便于更多的研究者和开发者获取和使用这些数据,共同推动智能农业识别技术的发展。这种开放共享的态度,有助于促进整个行业技术进步和农业生产的现代化。 本项目的实施是智能农业领域的一次重要尝试,它不仅推动了机器学习在农业领域的应用,更为水稻病虫害的精准识别提供了有效的方法和工具。通过本项目的成功实施,为未来利用智能化技术解决农业问题提供了新的视角和途径,具有重要的现实意义和深远的影响力。
2025-05-09 09:49:51 328.98MB 机器学习 Yolo 人工智能
1