我们提出了暗三叉戟,这是在短基线中微子实验中探索暗区的新渠道。 暗三叉戟是干净的,截然不同的事件,像中微子三叉戟一样,耦合非常弱的粒子的散射会导致产生轻子-反轻子对。 暗三叉戟产生在模型中发生,在该模型中,在束流转储环境中与中微子一起产生了长寿命的暗区粒子,并与下游的中微子探测器相互作用,产生了壳上的玻色子,该玻色子会衰变成一对带电的轻子。 我们关注一个简​​单的模型,其中暗物质粒子仅通过暗光子与标准模型相互作用,并集中在参数空间区域,其中暗光子质量小于暗物质的质量的两倍,因此仅衰减为 标准模型粒子。 我们将计算事件发生率,并讨论与费米实验室的Booster光束(MicroBooNE,SBND和ICARUS)对准的当前和即将到来的液氩探测器在暗物质中从暗物质中寻找暗三叉戟的搜索策略,假设暗区粒子是在更高的轴外产生的。 能量NuMI光束。 我们发现MicroBooNE已经记录了足够的数据,可以与该暗扇区模型上的现有边界竞争,并且将来的数据和实验将探究参数空间的新区域。
2025-08-11 21:09:50 1.35MB Open Access
1
基于模块化多电平换流器(MMC)的网逆变工况双闭环定交流电压仿真模型研究:应用NLM调制与二倍频环流抑制策略的电压均衡控制,基于模块化多电平换流器(MMC)的网逆变工况双闭环定交流电压仿真模型及优化策略研究:从控制方法到应用效果验证分析,模块化多电平流器(MMC)双闭环定交流电压仿真模型,网逆变工况,交流电压外环,电流内环控制。 最近电平逼近(NLM)调制,二倍频环流抑制,排序法子模块电压均衡。 子模块数量18个,直流侧母线电压36KV,交流侧相电压最大值18kV,额定功率30MW,控制效果良好。 联系即可发出,matlab版本可降,默认版本为2022a。 主页所有模型均为,请认准 模块化多电平流器(MMC)。 整流器。 PI控制。 双闭环。 ,1. 模块化多电平换流器(MMC); 2. 双闭环定交流电压仿真模型; 3. 网逆变工况; 4. 交流电压外环; 5. 电流内环控制; 6. 最近电平逼近(NLM)调制; 7. 二倍频环流抑制; 8. 排序法子模块电压均衡; 9. 子模块数量; 10. 直流侧母线电压; 11. 交流侧相电压最大值; 12. 额定功率; 13. 控制效果
2025-07-23 20:21:26 654KB rpc
1
基于模块化多电平换流器(MMC)的网逆变工况双闭环定交流电压仿真模型技术研究与应用展示,基于模块化多电平换流器(MMC)的网逆变工况双闭环定交流电压仿真模型设计与优化分析,模块化多电平流器(MMC)双闭环定交流电压仿真模型,网逆变工况,交流电压外环,电流内环控制。 最近电平逼近(NLM)调制,二倍频环流抑制,排序法子模块电压均衡。 子模块数量18个,直流侧母线电压36KV,交流侧相电压最大值18kV,额定功率30MW,控制效果良好。 联系即可发出,matlab版本可降,默认版本为2022a。 主页所有模型均为,请认准 模块化多电平流器(MMC)。 整流器。 PI控制。 双闭环。 ,核心关键词: 模块化多电平换流器(MMC); 双闭环定交流电压仿真模型; 网逆变工况; 交流电压外环; 电流内环控制; 最近电平逼近(NLM)调制; 二倍频环流抑制; 排序法子模块电压均衡; 子模块数量; 直流侧母线电压; 交流侧相电压最大值; 额定功率; 控制效果; Matlab版本; PI控制。,基于模块化多电平换流器(MMC)的网逆变工况双闭环仿真模型
2025-07-23 20:11:25 2.74MB scss
1
"基于Heric拓扑的逆变器网并网仿真模型:支持非单位功率因数负载与功率因数调节,共模电流抑制能力突出,采用PR单环控制与SogiPLL锁相环技术,LCL滤波器,适用于Plecs 4.7.3及以上版本",#Heric拓扑并网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; SOGIPLL锁相环; LCL滤波器; Plecs版本4.7.3以上。,"Heric拓扑:网并网仿真模型,支持非单位功率因数与共模电流抑制"
2025-07-16 11:42:25 714KB 数据仓库
1
光伏储能三相并网逆变切换运行模型:Boost电路应用与高效功率跟踪技术,光伏储能三相并网逆变切换运行模型:Boost、Buck-boost双向DCDC控制、PQ与VF控制及孤岛检测自动切换笔记分享,光伏储能+三相并网逆变切运行模型【含笔记】 包含Boost、Buck-boost双向DCDC、并网逆变器控制、网逆变器控制4大控制部分 光伏+boost电路应用mppt 采用电导增量法实现光能最大功率点跟踪 并网逆变采用PQ控制 网逆变采用VF控制控制 双向dcdc储能系统维持直流母线电压恒定 孤岛检测,然后在并、网之间进行自动切 波形漂亮 转过程看图说话 ,光伏储能; 三相并网逆变切换运行模型; Boost; Buck-boost双向DCDC; MPPT; 电导增量法; PQ控制; VF控制; 双向dcdc储能系统; 孤岛检测。,光伏储能系统:四控部分协同运行模型及MPPT最大功率追踪
2025-07-09 09:58:44 3.58MB 开发语言
1
内容概要:本文探讨了基于线性自抗扰LADRC控制的虚拟同步发电机(VSG)预同步网并网切换仿真模型。通过引入LADRC控制方法,增强了VSG系统的鲁棒性,减少了并网时的冲击电流,并提高了功率跟随速度和频率波动抑制能力。文中详细介绍了传统VSG预同步并网的过程及其局限性,并展示了加入LADRC控制策略后的改进效果。仿真结果显示,LADRC控制使得VSG输出电压波形更快地与电网电压同步,从而实现了更迅速和平稳的并网。 适合人群:从事电力系统研究、电力电子技术和控制系统设计的专业人士,尤其是关注VSG和LADRC控制领域的研究人员和技术人员。 使用场景及目标:适用于需要优化VSG并网性能的研究项目和实际工程应用。主要目标是提高VSG系统的鲁棒性和稳定性,特别是在应对负载突变和电网波动的情况下。 其他说明:文中还提供了详细的仿真分析,通过对比传统VSG和加入LADRC控制后的输出变化,验证了新控制策略的有效性。未来有望进一步探索更多先进的控制算法应用于VSG系统。
2025-06-27 16:59:10 2.27MB
1
STM32储能逆变器资料,提供原理图,pcb,源代码。 基于STM32F103设计,具有并网充电、放电;并网网自动切换;485通讯,在线升级;风扇智能控制,提供过流、过压、短路、过温等全方位保护。 功率5kw。 基于STM32F103设计的储能逆变器资料,其中包含原理图、PCB设计和源代码。这款储能逆变器具备多种功能,包括并网充电和放电功能,可以自动实现并网和网的切换;还支持485通讯,并具有在线升级功能。此外,逆变器还智能控制风扇,提供全方位的保护功能,包括过流保护、过压保护、短路保护和过温保护。它的功率为5kW。 提取的 1. STM32F103芯片:储能逆变器采用STM32F103作为设计基础,该芯片是一款基于ARM Cortex-M3架构的微控制器。 2. 储能逆变器:储能逆变器是一种能够将电能进行存储和转换的装置,通常用于电力系统的能量管理和应急供电。 3. 并网充电和放电:储能逆变器具备将电能从电池中充入电网或者将电网电能储存在电池中的功能。 4. 并网网自动切换:储能逆变器能够根据需要,自动实现从并网模式到网模式的切换,以实现更好的供电管理。 5. 485通讯
2025-06-25 10:57:57 405KB stm32
1
内容概要:本文详细介绍了如何在COMSOL Multiphysics中进行表面等激元(SPP)的建模与仿真实验。主要内容涵盖从模型建立、物理场选择、材料定义、几何构造、网格划分、边界条件设定、求解设置到最后的数据分析与优化。特别强调了使用Drude模型定义金属介电常数以及通过棱镜耦合方法激发表面等激元的具体步骤和技术要点。此外,还提供了MATLAB代码用于计算SPP的色散曲线,帮助理解SPP的基本性质及其激发条件。 适合人群:从事纳米光子学、表面等激元研究的科研人员及研究生,尤其是那些希望利用COMSOL进行相关仿真的学者。 使用场景及目标:适用于需要深入理解和掌握SPP特性和激发机制的研究项目。通过学习本文提供的具体操作流程,可以更好地设计实验方案,提高仿真的准确性,并为进一步探索SPP的应用提供理论支持和技术指导。 其他说明:文中不仅包含了详细的建模步骤,还有许多实用的小技巧和注意事项,有助于初学者避开常见的错误陷阱。同时,通过实例展示了如何调整参数以优化SPP的激发效果,使读者能够更加灵活地应用于自己的研究工作中。
2025-06-13 20:10:48 338KB
1
21.4 计算例子 我们计算一个薄透镜组得光焦度,有效焦距(EFL)为 400mm 的胶合消色差透镜,用到 的玻璃(及其性质)如表 21.2 所示。ΔPij如表 21.2 所示。 代入表中的数值,等式 21.13 中的分母为: 代入方程 21.13: 因此: 同理,由方程组 21.14 和 21.15 可得: (注意三个光焦度的总和等于 0.0025。)
2025-06-13 20:08:19 4.98MB Zemax初学宝典
1
内容概要:本文详细介绍了三相网逆变器在PLECS和Simulink环境中对接阻感负载的开环和闭环控制仿真实现方法。首先探讨了开环控制的基本架构,包括SPWM生成及其参数配置,以及负载特性对电压波形的影响。接着深入讨论了两种闭环控制方式:αβ坐标系下的PR控制和dq坐标系下的PI控制,涉及具体的控制算法实现、参数调整技巧及常见问题解决方法。文中还分享了一些实用的仿真优化技巧,如PLECS的理想模型设定、自动参数遍历脚本等。 适合人群:从事电力电子、新能源项目开发的技术人员,尤其是有逆变器设计和仿真经验的研发人员。 使用场景及目标:适用于希望深入了解三相网逆变器控制策略的研究人员和技术开发者,旨在帮助他们掌握不同控制方式的特点及应用场景,提高仿真的效率和准确性。 其他说明:文章提供了丰富的代码片段和实践经验,强调了理论与实际相结合的重要性,同时提醒读者注意仿真与实际情况之间的差异。
2025-06-13 19:12:01 2.6MB 电力电子 PLECS
1