内容概要:本文档详细介绍了MediaPipe人脸检测项目在Linux系统上的安装、配置和运行步骤。首先讲解了通过Bazelisk安装和管理Bazel的方法,包括下载、赋予执行权限、验证安装等步骤。接着阐述了MediaPipe的三种导入或下载方式,并重点描述了如何安装OpenCV和FFmpeg,包括使用包管理器安装预编译库、从源代码构建等方法。此外,文档还涉及了CUDA或GPU加速的配置,以及C++和Python版本的“Hello World”示例的编译与运行。最后,针对常见的编译错误如GCC版本不兼容、Python路径设置错误等提供了详细的解决方案。 适合人群:具备一定Linux操作基础,对计算机视觉或机器学习领域感兴趣的开发者,尤其是希望在嵌入式设备或Linux平台上实现人脸检测功能的研发人员。 使用场景及目标:①帮助开发者在Linux系统上快速搭建MediaPipe人脸检测环境;②解决在编译和运行过程中可能出现的技术难题;③为后续深入研究MediaPipe或其他相关项目提供基础支持。 阅读建议:由于涉及到较多命令行操作和技术细节,建议读者在实际环境中跟随文档逐步操作,同时注意根据自身环境调整相关配置参数。对于遇到的问题,可以参考文档提供的常见问题解决方案,并结合自身情况进行排查和解决。
2025-07-07 15:38:25 669KB Bazel MediaPipe OpenCV GPU加速
1
在计算机视觉和目标检测领域,有一项技术被广泛应用于物体识别和定位,这就是YOLO(You Only Look Once)模型。YOLO以其速度快、准确性高而著称,它能够将目标检测问题转化为一个回归问题,并且在检测速度与检测精度之间取得了较好的平衡。随着技术的发展,YOLO系列不断更新换代,YOLOv1作为该系列的首个版本,虽然准确率和速度相比后续版本有所不足,但在当时仍具有重要的里程碑意义。 而Crowdhuman数据集是一个特别针对人群密集场景下的人体检测和跟踪任务所设计的数据集,它的出现在很大程度上推动了人群计数和人群分析技术的发展。该数据集不仅包含了大量的人群图片,还标注了人体的头部位置,这为研究者提供了丰富的信息用于训练和评估他们的模型。由于人群场景的复杂性,这对目标检测算法的性能提出了更高要求。 本数据集将YOLOv1的标注格式应用于Crowdhuman数据集,这意味着每张图片中的人数及其位置都被标注成YOLOv1可以识别的格式。这样的数据集不仅可以直接用于训练,而且还可以通过YOLOv1的网络模型来进行人群统计,实现快速准确的人数统计功能。这对于人流量密集的场合,如商场、车站、机场等场所的人群监控具有重要的应用价值。例如,可以用于商业数据分析、安全管理、资源分配等多个领域。 将YOLO格式应用于Crowdhuman数据集,不仅让模型可以快速地定位图片中的人体,还能进行人数统计,这无疑为研究者提供了一个实用的工具,同时也推动了YOLO系列算法在人群检测和计数领域的应用。通过使用这种特定格式的数据集,研究者可以更加专注于模型的优化和算法的改进,而不需要从零开始收集和标注数据,从而节省了大量的时间和资源。 在技术层面,YOLOv1采用的是一种端到端的训练方式,它将图像分割成一个个格子,每个格子负责预测中心点落在该格子内的物体边界框和类别概率。这种设计使得模型在进行目标检测时能够更加迅速,同时也保持了较高的准确性。此外,YOLOv1模型在实际应用中具有较好的泛化能力,能够处理各种不同环境下的目标检测问题。 人群检测和计数是计算机视觉中的一个难点,而Crowdhuman数据集的出现正是为了解决这一难题。通过本数据集,研究者可以在丰富的场景下训练他们的模型,从而提高模型对于遮挡、密集排列等多种复杂情况的处理能力。随着深度学习技术的不断进步,结合YOLOv1格式的Crowdhuman数据集将能更好地推动人群检测技术的发展,为实际应用提供更为准确和高效的技术支撑。
2025-07-07 15:34:48 921.05MB YOLO 人数统计 目标检测 计算机视觉
1
YOLO11与Crowdhuman数据集的结合应用 YOLO11(You Only Look Once Version 11)是一种广泛应用于计算机视觉领域的人工智能算法,尤其在实时目标检测中表现突出。Crowdhuman数据集是由微软亚洲研究院发布的一个大规模人群检测数据集,它包含了成千上万张复杂场景中的人物图像,并且在标注中特别关注了人群密度大、遮挡严重的情况。将YOLO11与Crowdhuman数据集结合,不仅可以提升目标检测模型的准确率,而且还能有效处理人群密集场景中的多目标检测问题。 具体来说,YOLO11算法的核心思想是将目标检测任务转化为回归问题,通过直接预测边界框的坐标以及目标的类别概率,实现快速准确的目标检测。它能够一次性处理整个图片,预测出所有可能的目标,因此拥有很高的处理速度。然而,传统的YOLO版本在处理像Crowdhuman这样复杂的数据集时,面临着挑战,因为人群场景中目标的数量多、相互之间遮挡严重,导致检测难度大大增加。 为了提升YOLO在人群场景中的表现,研究者们对算法进行了一系列的改进。其中的一个关键改进就是采用了更加复杂的网络结构以及引入注意力机制,这些改进可以使得模型更好地聚焦于关键目标,同时忽略那些对检测目标不够重要的信息。此外,在数据预处理和后处理阶段也进行了一些优化,比如采用了更加精细化的标注策略,以及更加智能化的非极大值抑制算法。 在实际应用中,使用YOLO11格式对Crowdhuman数据集进行标注有以下几个关键步骤:需要对数据集中的图片进行图像增强,以生成更多样化的训练样本。然后,采用标注工具为每一张图片中的每个人建立对应的边界框,并标注出他们的类别和位置。这一步骤是非常耗时的,需要非常仔细的工作来确保标注的准确性。接着,将标注好的数据输入到YOLO11模型中进行训练。在这个阶段,需要调整模型的超参数,比如学习率、批次大小和训练轮数等,以获得最佳的训练效果。通过在验证集上的测试来评估模型的性能,并根据测试结果对模型进行微调,直至满足实际应用的需求。 为了实现这些步骤,研究者们开发了各种工具和框架,比如Darknet、TensorFlow Object Detection API和PyTorch等。这些工具提供了丰富的接口和功能,使得从数据标注到模型训练再到模型评估的整个流程变得更加顺畅和高效。 值得注意的是,人群统计和分析不仅仅是目标检测那么简单,它还涉及到更深层次的计算机视觉问题,比如人群密度估计、行为理解以及人群异常行为检测等。因此,结合YOLO11和Crowdhuman数据集不仅可以提高目标检测的精度,还能为这些复杂问题的解决提供坚实的数据基础和技术支持。 YOLO11与Crowdhuman数据集的结合对于提升目标检测算法在人群场景中的表现具有重要意义。未来,随着算法的不断进步和数据集的持续丰富,我们有望看到在人群统计、公共安全以及智能监控等应用领域中取得更多的突破。
2025-07-07 15:33:24 817.83MB YOLO 人数统计 目标检测 计算机视觉
1
本教程是为遥感和计算机视觉领域专业人士编写的,内容涵盖了如何使用Python语言对高光谱数据进行加载和可视化。通过本教程,读者将能够掌握利用Python工具处理遥感数据的核心技能,具体而言,就是针对高光谱遥感数据集进行有效的数据加载和图像展示。 在高光谱遥感技术中,我们可以获取地表反射光的高分辨率光谱信息,这为地物识别、农作物分类和环境监测等研究提供了丰富数据资源。然而,高光谱数据通常体积庞大、维度高,对数据处理能力有着较高的要求。因此,如何高效准确地加载和处理这些数据成为了技术应用的瓶颈之一。 本教程通过提供相应的资源文件,帮助读者理解并实践高光谱数据的加载过程。资源文件包括印度松果数据集(Indian_pines_corrected.mat)及其对应的真实标签数据集(Indian_pines_gt.mat),这些数据集对于理解和应用高光谱图像的分类和分析至关重要。除此之外,教程还包含了一个Python脚本(Load_and_visual.py),该脚本提供了加载高光谱数据集并进行基本图像可视化的操作示例。 在教程中,首先会对高光谱数据的概念进行详细介绍,包括其数据结构、特点以及在遥感领域的应用。接下来,将深入讲解如何使用Python中的特定库(例如scikit-learn、NumPy等)来读取数据集,并进行必要的数据预处理操作。为了使数据可视化,教程还会介绍如何利用Python的可视化工具(如Matplotlib、OpenCV等)来展示高光谱图像。 通过本教程的学习,读者不仅能够学会如何加载和处理高光谱数据,还能够对数据进行深入分析,从而进行高光谱图像的分类和识别。这对于未来在遥感图像处理和计算机视觉领域的进一步研究和应用将提供宝贵的基础知识和实践经验。 此外,由于高光谱数据的复杂性和多维性,本教程还将介绍一些降维技术,比如主成分分析(PCA)、独立成分分析(ICA)等,这些技术能够帮助我们更好地理解高维数据并提取有用信息。最终,通过一系列的实例和练习,教程旨在帮助读者加深对高光谱数据处理和可视化的理解和应用。 无论读者是遥感领域的研究者,还是对计算机视觉感兴趣的学者,本教程都将是一个宝贵的资源。通过实际操作和案例分析,读者将能够掌握高光谱数据处理的核心技术,并能够将这些技术应用于各自的专业领域中。
2025-06-29 16:32:55 5.68MB 高光谱遥感 计算机视觉 可视化
1
计算机视觉与模式识别领域近年来取得了长足的发展,特别是在手势识别方面,它作为人机交互的重要方式之一,已经被广泛应用于智能控制系统、虚拟现实以及自动化设备中。本项目是基于Python3.7编程语言,结合OpenCV库,针对手势轮廓特征提取及机器学习分类技术的深入研究,并且完整地展示了从手势图像采集、预处理、特征提取,到模型训练以及最终的分类识别整个流程的开发步骤。 项目实施过程中,开发者需要对Python编程语言有较深入的理解,同时对OpenCV库的操作应熟练掌握。OpenCV库作为计算机视觉领域最流行的开源库之一,它提供了大量的计算机视觉和机器学习算法,使得开发者可以快速地进行图像处理和分析。 手势轮廓特征提取是手势识别中的关键技术。在这个项目中,开发者需要运用图像处理技术,如边缘检测、轮廓提取等,来准确地从背景中分离出手势图像,并获取手势的轮廓信息。这些轮廓信息将作为后续机器学习算法的输入特征,用于训练分类模型。 机器学习分类是通过训练算法对特征数据进行学习,从而实现分类任务的过程。在这个项目中,可能会使用到的机器学习模型包括支持向量机(SVM)、随机森林、神经网络等。这些模型需要基于提取到的特征数据进行训练,以达到准确分类手势的目的。 此外,项目中还包含了手势库的构建以及傅里叶描述子的使用。手势库的构建是为了存储大量的手势图像样本,它们将被用于训练和测试机器学习模型。傅里叶描述子则是一种用于形状描述的方法,它可以将轮廓信息转换为频域信息,这有助于更好地提取和表示形状的特征。 整个项目的开发是在Windows 10环境下进行的,这为开发者提供了稳定的操作系统平台。而在项目中提到的“gesture-recognition-master”文件夹,可能是包含了项目源代码、数据集、预训练模型以及其他重要文件的核心目录,是整个项目实现的关键部分。 此外,项目的文档资源包括“附赠资源.docx”和“说明文件.txt”,这些文档资料将为项目的开发提供指导和帮助。开发者可以通过阅读这些文档来了解项目的详细说明、安装配置指南以及使用方法等重要信息。 这个项目是计算机视觉与模式识别领域中的一个实际应用案例,它不仅涵盖了手势识别技术的关键环节,还结合了机器学习和深度学习方法,具有很高的实用价值和研究意义。通过对项目的深入分析和学习,开发者可以掌握手势识别的核心技术,为未来在相关领域的发展打下坚实的基础。
2025-06-28 12:02:03 8.85MB
1
计算机视觉(模型、学习和推理)Algorithms算法伪代码 AnswerBookletStudents常见问题 Computer vision models, learning and inference CVMmatlab代码
2025-06-22 11:25:00 212.75MB 计算机视觉
1
内容概要:本文档主要介绍了计算机视觉领域中图像变换与图像增强的相关技术。首先回顾了空间域的灰度变换和空间滤波方法,包括图像反转、对数变换、幂次变换、分段线性变换、直方图均衡化和直方图规定化等技术。接着详细讨论了频域变换和频域增强技术,重点讲解了一维和二维傅立叶变换的定义、性质及应用。文档还介绍了几种常见的滤波器,包括理想低通滤波器、巴特沃思滤波器和高斯滤波器,并解释了它们的滤波效果和应用场景。 适合人群:计算机视觉、图像处理领域的研究人员和技术开发者,尤其是有一定数学和编程基础的学生和工程师。 使用场景及目标:适用于学习和研究图像处理技术,特别是对频域变换和滤波器的应用感兴趣的学者。目标是在理解和掌握频域变换的基础上,能够应用于实际的图像处理项目,提高图像的质量和效果。 阅读建议:本文档内容详尽且涉及较多数学公式,建议结合实例进行学习,同时辅以相关工具和软件的实际操作,加深对理论知识的理解和应用能力。
1
内容概要:本文详细介绍了YOLOv11目标检测算法的改进,特别是引入了来自UNetv2的多层次特征融合模块——SDI(Selective Deformable Integration)。YOLOv11在保持高速推理的同时,通过采用EfficientNet主干网络、PANet和FPN Neck模块及多种注意力机制,显著提升了检测精度。SDI模块通过选择性融合不同尺度特征、结合可变形卷积技术,增强了细节信息的提取,提高了多尺度特征融合能力,改进了小目标检测精度。实验结果显示,YOLOv11在COCO和VOC数据集上的mAP分别从40.2%提升至43.7%、从77.5%提升至80.3%,且FPS保持稳定。; 适合人群:对目标检测算法有一定了解的研究人员、工程师及深度学习爱好者。; 使用场景及目标:①了解YOLOv11的创新技术和优化方向;②掌握SDI模块的工作原理及其在目标检测中的应用;③研究多层次特征融合、可变形卷积等技术对模型性能的影响。; 其他说明:本文不仅展示了YOLOv11的技术细节,还通过实验验证了SDI模块的有效性,为未来目标检测算法的发展提供了新的思路。建议读者结合实际应用场景,深入研究SDI模块的实现与优化方法。
2025-06-20 10:09:21 17KB 目标检测
1
handbook of MRI pulse sequences, mri界神书之一 This indispensable guide gives concise yet comprehensive descriptions of the pulse sequences commonly used on modern MRI scanners. The book consists of a total of 65 self-contained sections, each focused on a single subject.
2025-06-06 09:04:58 44.04MB 计算机视觉
1
YOLOv11(You Only Look Once version 11),作为计算机视觉领域的重要算法,专注于目标检测任务,通过单次网络前向传播来实现对图像中不同对象的定位和分类。YOLOv11是由一个活跃的开源社区和一群专业研究人员共同维护和改进的,旨在提供一个快速、准确且易于实现的解决方案,适用于各种应用,如自动驾驶、安防监控、工业检测等。 YOLOv11算法的核心思想是将目标检测任务转化为一个回归问题,即直接从图像像素到边界框坐标和类别的预测。这种端到端的方法使得YOLOv11能够实现实时检测,并且具有相对较高的准确性。YOLOv11在处理速度和准确率之间取得了一个良好的平衡,使其在许多实时应用中成为首选。 在YOLOv11中,整个图像被划分成一个个格子,每个格子负责预测边界框以及对应的类别概率。这种网格结构的设计有助于算法捕获图像中的细微特征,并且通过这种方式,YOLOv11能够处理目标的不同大小和尺度。此外,YOLOv11算法在损失函数的设计上也进行了优化,使其能够更好地训练网络,以适应不同的任务需求。 随着深度学习技术的不断进步,YOLOv11作为算法的一个版本,不断地吸取新的研究成果,以改进其性能。比如,引入注意力机制、优化网络结构、增加数据增强方法等,都是为了提升检测的准确性和鲁棒性。YOLOv11还通过引入锚框(anchor boxes)来解决目标形状和大小的多样性问题,进一步提高了检测的精度。 YOLOv11的实现通常依赖于深度学习框架,如TensorFlow或PyTorch。这些框架提供了一套丰富的工具和库函数,使得研究人员和开发人员可以更加容易地构建和训练YOLOv11模型。YOLOv11的代码和预训练模型通常可以在官方网站和开源项目中找到,从而方便社区的成员下载、使用和进一步的开发。 由于YOLOv11具有较好的实时性能和较高的准确率,它被广泛应用于包括但不限于工业自动化、智能监控、医疗影像分析以及无人驾驶等众多领域。在这些领域中,快速准确的目标检测对于决策和响应至关重要。例如,在自动驾驶车辆中,能够快速准确地识别道路上的其他车辆、行人、交通标志等,对于确保行车安全具有决定性意义。 此外,YOLOv11还受到了社区的热烈响应,因为它易于理解和实现。与其他目标检测算法相比,YOLOv11简洁的设计使其更易于研究人员和开发者进行修改和扩展,以满足特定应用的需求。因此,YOLOv11不仅仅是一个目标检测算法,它还代表了一个活跃的研究方向,不断地推动计算机视觉技术的边界。 YOLOv11的成功也催生了许多变体和衍生作品,它们在不同的方面对原始算法进行了改进。这些变体通常针对特定的场景或者性能指标进行优化,例如提高小物体检测的精度或提升在低光环境下的检测性能。因此,即使YOLOv11已经非常优秀,研究人员和工程师们仍然在不断地探索如何进一步提升其性能。 YOLOv11不仅仅是一个算法,它还是一个活跃的研究和应用社区。随着计算机视觉和深度学习技术的不断进步,YOLOv11也在不断地进化,以应对未来可能出现的挑战和需求。无论是在研究机构、企业还是学术界,YOLOv11都将继续发挥其重要作用,推动计算机视觉技术的发展和应用。
2025-06-04 14:13:33 2.03MB 计算机视觉 人工智能 深度学习
1