基于机器学习的商品评论情感分析——毕业设计项目.zip从淘宝爬取评论 使用Selenium模拟真实登录行为,并爬取数据。 数据清理 如果文本中有“666“,”好好好“等无用词语,去掉评论中的标点符号。 分词 使用jieba精确模式进行分词,构造词典 将词汇向量化 创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引 分类模型对比 SVM vs LSTM 基于机器学习的商品评论情感分析——毕业设计项目.zip从淘宝爬取评论 使用Selenium模拟真实登录行为,并爬取数据。 数据清理 如果文本中有“666“,”好好好“等无用词语,去掉评论中的标点符号。 分词 使用jieba精确模式进行分词,构造词典 将词汇向量化 创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引 分类模型对比 SVM vs LSTM 基于机器学习的商品评论情感分析——毕业设计项目.zip从淘宝爬取评论 使用Selenium模拟真实登录行为,并爬取数据。 数据清理 如果文本中有“666“,”好好好“等无用词语,去掉评论中的标点符号。 分词 使用jieba精确
摘要:本文采用酒店评论数据集进行情感分析,通过机器学习和基于情感词典两种方法进行分析比较。其中,机器学习方法采用了多种算法,有支持向量机、神经网络、朴素贝叶斯以
2022-11-29 00:09:24 1.33MB
1
资源包含文件:设计报告word+项目源码及数据 本文使用Keras框架搭建对于中文商品评论的情感分析模型。训练 2 个 epoch 后在测试集上的准确率为 90.42%。 preprocess.py 数据预处理 models.py 模型定义 train.py 训练模型 predict.py 模型推理 对于文本的预处理包括标识化处理、移除停用词和标点符号、移除英文和数字、序列对齐等。 详细介绍参考:https://biyezuopin.blog.csdn.net/article/details/125665844
2022-09-07 00:09:36 7.44MB Python LSTM 中文评论 情感分析
AI Challenger 2018 细粒度用户评论情感分析数据集 训练集: sentiment_analysis_trainingset.csv 为训练集数据文件,共105000条评论数据 sentiment_analysis_trainingset_annotations.docx 为数据标注说明文件 protocol.txt 为数据集下载协议 验证集: sentiment_analysis_validationset.csv 为验证集数据文件,共15000条评论数据 sentiment_analysis_validationset_annotations.docx 为数据标注说明文件 protocol.txt 为数据集下载协议 测试集: sentiment_analysis_testa.csv 为测试集A数据文件,共15000条评论数据 protocol.txt 为数据集下载协议
2022-05-05 12:05:52 68.35MB AIChallenger20
1
基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习的商品评论情感分析,毕业设计项目源码 基于机器学习
2022-05-04 16:05:54 66.66MB 机器学习
基于机器学习的商品评论情感分析——毕业设计项目.zip 大学生课程设计 基于机器学习的课程设计 自己大二写的课程设计
2022-04-22 18:05:09 66.66MB 机器学习 人工智能
1、内容概要:资源主要包括:中文商品评论情感判别源代码和数据集。中文情感分析 商品(书籍、酒店、计算机、牛奶、手机、热水器)评论数据包括pos积极评论数据和neg消极评论数据。源代码svm_w2v_model.py 是基于Word2vec生成词向量,求平均获得句向量,构建SVM模型完成文本评论情感预测。 2、本资源适用于初学者学习文本分类使用,主要包括数据预处理、机器学习、文件的读取和写入等。
2022-04-09 12:06:25 1.94MB 文本分类 机器学习
sentiment-analysis-platform 基于LSTM的电商评论情感分析平台 技术要点: Java前端:Bootstrap4、jQuery Java后台:SpringBoot Python服务: Python3、Flask 数据库:MySQL、MongoDB 模型框架:Keras+TensorFlow 爬虫:selenium
2022-03-01 16:25:28 40.83MB JavaScript
1
使用python爬取电商平台的商品评论,对评论进行情感分析、主题分析,使用机器学习生成算法模型,搭建flask框架进行可视化展示,使用前请查看说明文档
2022-02-13 09:33:37 22KB python 电商评论 flask 情感分析
1
提供mysql文件 860多M 数据内容包括 1.歌曲/歌单名称 2.评论点赞数 3.评论内容 4.评论时间 5.评论用户
2022-02-05 09:14:44 856.54MB mysql 歌单评论 情感分析 数据挖掘