贝叶斯超参数优化库hyperopt安装包及依赖库,可利用pip离线安装 实现基于TPE的贝叶斯优化,不支持基于高斯过程的贝叶斯优化
2022-09-05 00:26:32 49.59MB 文档资料 超参数优化
1
帮助optuna初学者,更快了解optuna框架的结构及使用方法
2022-08-10 14:43:26 1.73MB python optuna 超参数优化
1
包括datasets文件夹、tf_utils.py、improv_utils.py、作业L2-3以及自己的图片finger5.py
2022-08-04 16:05:38 37MB 深度学习 吴恩达
1
hpbandster-sklearn hpbandster-sklearn是一个Python库,为超参数调整库提供了包装器HpBandSterSearchCV 。 动机 HpBandSter实现了几种尖端的超参数算法,包括HyperBand和BOHB。 它们通常优于标准的随机搜索,可以在更短的时间内找到最佳的参数组合。 HpBandSter功能强大且可配置,但对于初学者来说,其用法通常是不直观的,并且需要大量的样板代码。 为了解决该问题,创建了HpBandSterSearchCV来替代scikit-learn超参数搜索器,它遵循了众所周知的流行API,从而可以以最小的设置调整scikit-
2022-07-11 16:53:48 29KB python machine-learning scikit-learn sklearn
1
2048 四联骨牌 滑行 更多详情、使用方法,请下载后阅读README.md文件
2022-06-25 18:03:52 984KB Crystal
数据挖掘 贝叶斯算法 C++ 贝叶斯算法一般都用MATLAB实现,好不容易找到个C++的,可以用到工程中去
一般信息 支持向量机(SVM)和相关的基于内核的学习算法是一类知名的机器学习算法,用于非参数分类和回归。 liquidSVM是SVM的实现,其主要功能是: 完全集成的超参数选择, 无论大小数据集,其速度都极高, , , , 和绑定, 为专家提供充分的灵活性,以及 包括各种不同的学习场景: 多类别分类,ROC和Neyman-Pearson学习, 最小二乘,分位数和预期回归。 如有疑问和意见,请通过与我们联系。 您也可以在此处要求注册到我们的邮件列表。 liquidSVM已根据许可。 如果您需要其他许可证,请与联系。 命令行界面 命令行版本的。 Linux / OS X的终
2022-06-05 16:05:49 5.28MB python c-plus-plus machine-learning r
1
一个异常检测库,包含最先进的算法和功能,例如实验管理、超参数优化和边缘推理。 Anomalib 是一个深度学习库,旨在收集最先进的异常检测算法,用于在公共和私有数据集上进行基准测试。Anomalib 提供了最近文献中描述的几种即用型异常检测算法的实现,以及一组有助于开发和实现自定义模型的工具。该库非常关注基于图像的异常检测,该算法的目标是识别异常图像或数据集中图像中的异常像素区域。Anomalib 不断更新新算法和训练/推理扩展,所以请继续检查! 主要特点: 最大的即用型深度学习异常检测算法和基准数据集的公共集合。 基于PyTorch Lightning的模型实现,以减少样板代码并将实现工作限制在基本要素上。 所有模型都可以导出到OpenVINO中间表示 (IR),以在英特尔硬件上进行加速推理。 一组推理工具,用于快速轻松地部署标准或自定义异常检测模型。
2022-05-11 09:04:51 2.77MB python 算法 开发语言
使用 Wild Horse Optimizer (WHO) 的支持向量机 (SVM) 超参数优化(matlab代码) 我们使用 Wild Horse Optimizer 作为解决工程优化问题的强大且快速的元启发式算法,在分类问题中开发优化支持向量机算法超参数(内核、c、gamma) 首先,您可以使用任何带有编辑 Main.m 文件的数据集,然后单击运行
2022-05-11 09:04:42 12KB matlab 支持向量机 文档资料 开发语言
使用Haris Hawks算法对SVM进行超参数优化的Matlab代码
2022-05-11 09:04:22 4KB 支持向量机 matlab 算法 机器学习