文件夹包括data子文件夹(里面是用于训练卷积神经网络的CIFAR-10数据集)、CIFAR-10.ipynb(里面是卷积神经网络的实现代码,在jupyter里运行它便可以训练自己的卷积神经网络)。文件夹中其他文件是写代码时我做测试用,不影响对最后的结果,可以不看。代码准确无误,下载后直接运行,不需要改动。
2021-12-04 00:11:04 342.78MB 卷积神经网络 tensorflow jupyter CIFAR-10
1
里面包含TensorFlow和sklearn基于CIFAR-10数据集的前馈神经网络实现,以及各自的结果图片。
2021-11-17 15:39:54 807KB 机器学习
1
CIFAR-10数据集是深度学习中的一个通用的用于图像识别的基础数据集,官网下载太慢了,可以用这个学习交流。
2021-11-13 17:24:24 162.17MB cifar10 深度学习
1
Transfer_Learning_ResNet50 在此存储库中,我们将执行转移学习,以在Keras中的ResNet50模型上训练CIFAR-10数据集
2021-11-11 17:02:32 4KB JupyterNotebook
1
CIFAR_10-with-pytorch 一个Pytorch练习,实现CIFAR-10数据集的图像分类
2021-11-08 10:00:37 8KB Python
1
Tensorflow 2.0卷积神经网络cifar-10数据集图像分类1、cifar 10 数据集简介2、数据导入3、CNN模型搭建4、模型编译训练5、模型评估及预测6、拓展学习之独立热编码实现 1、cifar 10 数据集简介    cifar 10相比于MNIST数据集而言更为复杂,其拥有10个种类**(猫、飞机、汽车、鸟、鹿、狗、青蛙、马、船、卡车)**,这十大类共同组成了50000的训练集,10000的测试集,每一张图片都是32*32的3通道图片(彩色图片),在神经网络中,通常表示成如下形式:
2021-10-26 12:06:28 130KB ar c ci
1
步骤如下: 1.使用torchvision加载并预处理CIFAR-10数据集、 2.定义网络 3.定义损失函数和优化器 4.训练网络并更新网络参数 5.测试网络 运行环境: windows+python3.6.3+pycharm+pytorch0.3.0 import torchvision as tv import torchvision.transforms as transforms import torch as t from torchvision.transforms import ToPILImage show=ToPILImage() #把Tensor转成Image,
2021-10-21 20:37:32 41KB c cifar-10 IF
1
使用Cifar-10数据集进行图像分类 资料来源: 数据集下载: 抽象的: CIFAR-10数据集包含10个类别的60000个32x32彩色图像,每个类别6000个图像。 *有50000张训练图像和10000张测试图像。 数据集分为五个训练批次和一个测试批次,每个批次具有10000张图像。 测试批次包含每个类别中恰好1000个随机选择的图像。 训练批次按随机顺序包含其余图像,但是某些训练批次可能包含比另一类更多的图像。 在它们之间,培训批次包含每个班级的正好5000张图像。 这些是数据集中的类: 飞机 汽车 鸟 猫 鹿 狗 青蛙 马 船 卡车 这些类是完全互斥的。 即汽车和卡车之间没有重叠。 “汽车”包括轿车,越野车和类似的东西。 “卡车”仅包括大型卡车。 都不包括皮卡车。 方法 导入的数据集 分析数据 应用的PCA 使用随机森林进行预测 使用KNN进行预测 使用Logist
1
generative_adversarial_networks_101:生成对抗网络的Keras实现。 具有MNIST和CIFAR-10数据集的GAN,DCGAN,CGAN,CCGAN,WGAN和LSGAN模型
2021-10-18 15:09:09 3.08MB deep-learning tensorflow keras jupyter-notebook
1
两个数据集 mnist数据集 cifar-10-python.tar.gz cifar-10数据集
2021-08-25 16:11:55 173.66MB mnist cifar-10 数据集
1