FPGA高斯噪声生成器
2026-01-07 09:10:08 176.89MB FPGA
1
标题 "FPGA学习之-串口发送图片+ram存储+tft屏幕显示" 涉及的是在FPGA(Field-Programmable Gate Array)设计中实现图像数据的串行传输、RAM存储以及在TFT(Thin Film Transistor)屏幕上显示的技术。这个项目可能是为了帮助初学者了解如何利用FPGA进行多媒体应用的开发。 FPGA是一种可编程的集成电路,能够根据设计者的需要配置逻辑功能。在本项目中,FPGA被用作核心处理器,负责接收图像数据、存储数据并驱动TFT屏幕显示图像。 1. **串口发送图片**:串口通信是计算机通信的一种常见方式,通常使用UART(Universal Asynchronous Receiver/Transmitter)接口。在这个项目中,外部设备(如PC)通过UART协议将图片数据以串行的方式发送到FPGA。UART协议需要设置波特率、奇偶校验、停止位等参数,确保数据的正确传输。 2. **RAM存储**:在FPGA内部,RAM(Random Access Memory)用于临时存储接收到的图像数据。因为图片通常包含大量的像素信息,需要较大的存储空间。FPGA中的分布式RAM或块RAM可以用来实现这一功能,存储接收到的串行数据,并按需读取供屏幕显示。 3. **TFT屏幕显示**:TFT屏幕是一种有源矩阵液晶显示器,具有高对比度和色彩鲜艳的特点。在FPGA设计中,需要编写相应的驱动程序来控制TFT屏幕的时序,包括初始化、数据写入、刷新率控制等。这些控制信号由FPGA生成并发送到屏幕的控制接口,使得图像数据能在屏幕上正确显示。 4. **工程源码**:提供的"image_uart_rx"可能是一个工程文件,包含了实现上述功能的VHDL或Verilog代码。用户可以下载此文件,通过FPGA开发软件(如Xilinx ISE、Altera Quartus II或Vivado)进行编译和下载,然后在实际硬件上运行,观察图像显示效果。 5. **FPGA开发**:学习这个项目可以帮助开发者了解数字系统设计的基本概念,如串行通信协议、内存管理以及硬件描述语言编程。同时,它也涉及到了实时数据处理和接口控制,这些都是FPGA在现代电子系统中的重要应用。 6. **范文/模板/素材**:这表明该资源可能作为一个学习示例或者参考模板,供开发者在自己的项目中借鉴或修改,以实现类似的功能。 这个FPGA项目涵盖了串行通信、内存管理和图形显示等多个关键领域,对于想要深入理解和实践FPGA应用的工程师来说,是一个非常有价值的参考资料。通过分析和理解提供的源码,开发者可以提升其在FPGA设计方面的技能。
2026-01-06 16:43:21 51.38MB fpga开发
1
0 引言   短波信道存在多径时延、多普勒频移和扩散、高斯白噪声干扰等复杂现象。为了测试短波通信设备的性能,通常需要进行大量的外场实验。相比之下,信道模拟器能够在实验室环境下进行类似的性能测试,而且测试费用少、可重复性强,可以缩短设备的研制周期。所以自行研制信道模拟器十分必要。   信道模拟器可选用比较有代表性的 Watterson 信道模型 ( 即高斯散射增益抽头延迟线模型 ) ,其中一个重要环节就是快速产生高斯白噪声序列,便于在添加多普勒扩展和高斯白噪声影响时使用。传统的高斯白噪声发生器是在微处理器和 DSP 软件系统上实现的,其仿真速度比硬件仿真器慢的多。因此,选取 FPGA 硬件平 在电子设计自动化(EDA)和可编程逻辑器件(PLD)领域,利用FPGA(现场可编程门阵列)产生高斯白噪声序列是一种高效的方法,尤其在构建信道模拟器时至关重要。信道模拟器用于模拟真实环境下的通信信道特征,例如短波通信信道,这些信道常常受到多径时延、多普勒频移和高斯白噪声的干扰。通过模拟这些现象,可以对通信设备进行性能测试,节省大量外场实验的成本,并增强测试的可重复性。 Watterson信道模型是一种广泛应用的信道模拟模型,它基于高斯散射增益抽头延迟线,其中需要快速生成高斯白噪声序列。传统方法是在微处理器或数字信号处理器(DSP)上实现,这种方法在速度上远不及硬件仿真。FPGA硬件平台则提供了更快速、全数字化处理的解决方案,具有更低的测试成本、更高的可重复性和实时性。 本文介绍了一种基于FPGA的高斯白噪声序列快速生成技术。该技术利用均匀分布与高斯分布之间的映射关系,采用折线逼近法在FPGA中实现。这种方法简便、快速且硬件资源占用少,使用VHDL语言编写,具备良好的可移植性和灵活性,可以方便地集成到调制解调器中。 生成均匀分布的随机数是关键步骤。m序列发生器是一种常用的伪随机数生成器,由线性反馈移位寄存器(LFSR)产生,其特点是周期长、统计特性接近随机。m序列的周期与LFSR的级数有关,例如,采用18级LFSR,对应的本原多项式为x18+x7+1,可以生成(2^18-1)长度的序列。然而,由于LFSR的工作机制,相邻的序列状态并非完全独立,因此需要降低相关性。 降低相关性可以通过每隔2的幂次个时钟周期输出一次状态值来实现,这样不会影响m序列的周期,同时减少了相邻样点的相关性。这种方法不需要额外的硬件资源,如交织器,从而节省了FPGA的资源。 接着,从均匀分布转化为高斯分布,通常采用Box-Muller变换或者Ziggurat算法。文中提到的是通过均匀分布和高斯分布之间的映射关系进行转换。具体方法未在给出的部分中详细阐述,但通常涉及到将均匀分布的随机数映射到具有特定均值和方差的高斯分布。 通过FPGA实现的高斯白噪声生成方案,结合有效的均匀分布到高斯分布转换方法,可以在实验室环境中快速模拟短波通信信道的噪声特性,对通信设备的性能进行精确评估。这样的设计有助于提高研发效率,降低测试成本,并为通信系统的设计和优化提供有力支持。
2026-01-06 16:15:05 292KB EDA/PLD
1
FPGA(Field-Programmable Gate Array,现场可编程门阵列)是一种可以通过用户编程来配置的集成电路。FPGA具有可重复编程、高度灵活性和性能优势,适用于高速数据处理和复杂算法的实现。OMAP-L138是由德州仪器(Texas Instruments,简称TI)开发的一款低功耗、高性能的DSP+ARM双核处理器,具备C6748浮点DSP核心和ARM9微控制器核心。 OMAP-L138+FPGA开发板结合了OMAP-L138的DSP和ARM双核处理能力与FPGA的可编程逻辑资源,提供了三核高速数据采集处理的解决方案。Spartan-6是赛灵思(Xilinx)生产的一系列高性能FPGA芯片,具有灵活的逻辑资源和丰富的I/O接口,适合用于处理高速数据流和复杂的算法逻辑。 开发板的设计充分考虑了数据采集处理领域的需求,比如电力、通信、工控、医疗和音视频处理等。这样的三核硬件平台可以支持实时信号处理、图像处理、数据压缩和加密等多种应用。 在三核高速数据采集处理系统中,OMAP-L138通过其通信接口如uPP(Universal Parallel Port,通用并行端口)和EMIF(External Memory Interface,外部存储器接口)与Spartan-6 FPGA芯片相连接。这些接口保证了DSP和FPGA之间的高速数据传输。 DSPLINK和SYSLINK是TI提供的软件解决方案,用于OMAP-L138内部DSP和ARM双核之间的通信。这些软件协议栈可以有效地管理双核处理器之间的任务调度、同步和数据交换,使得开发人员能够充分利用OMAP-L138的双核计算能力。 广州创龙电子科技有限公司是一家专业的嵌入式解决方案提供商,专注于DSP+ARM+FPGA三核系统方案的开发。他们为电力、通信、工控、音视频处理等数据采集处理行业提供嵌入式开发平台工具、软硬件定制设计和技术支持服务。通过与多家国内知名企业、研究所和高校的技术合作,广州创龙已经成为了OMAP-L138相关开发的领先企业。 该开发板的用户可以获得广州创龙提供的开发资料和技术支持说明,帮助开发者快速掌握和使用开发板,缩短产品上市周期。公司提供的文档包含了开发板的简介、资源框图、典型应用领域、硬件设计细节、软件实现方式以及产品订购信息等。 此外,广州创龙为其所有产品提供了一年的保修期。在保修期内,非人为因素造成的硬件损坏问题可以享受免费维修或更换服务。销售和技术支持的联系方式被清晰地列出,方便用户进行咨询和购买。
2026-01-06 05:19:42 2.32MB ARM DSP FPGA开发板
1
创龙C6748/OMAPL138+FPGA开发板是一款针对高性能计算和实时数据处理应用设计的专业开发工具。这款开发板的核心在于TI(Texas Instruments)的TMS320C6748 DSP(数字信号处理器)和OMAP-L138微控制器,同时集成了FPGA(现场可编程门阵列),使得它在信号处理和系统扩展方面具有极高的灵活性。 C6748是TI公司的一款浮点型DSP,基于C67x+内核,拥有强大的处理能力,特别适合进行音频、视频、图像处理以及通信领域的复杂算法。其工作频率高达700MHz,提供了高效的浮点运算能力,可满足高精度和高效率的计算需求。C6748还配备有丰富的片上存储器资源和接口,如DDR内存、EVM连接器、USB、以太网等,方便用户进行系统集成和外设连接。 OMAP-L138则是TI的混合信号处理器,集成了ARM926EJ-S RISC处理器和C674x DSP核心,能够处理控制任务和数据处理任务。它的特点是低功耗和高性能,适用于工业控制、医疗设备、自动化等嵌入式应用。OMAP-L138支持多种操作系统,如Linux、VxWorks等,为开发者提供了更多的软件选择。 FPGA的加入使得开发板功能更加强大。FPGA可以动态配置,用于实现用户自定义的逻辑电路,如接口扩展、信号调理、协议转换等。这为开发者提供了极大的硬件灵活性,可以根据项目需求定制硬件功能,而无需重新设计整个系统。 提供的文档包括“TL138FI-EVM OMAPL138+FPGA三核高速数据采集处理开发板.doc”、“TL6748FI-EVM TMS320C6748+FPGA高速数据采集处理开发板.doc”以及“TL-HSAD-LX FGPA高速数据采集卡.doc”。这些文档详细介绍了开发板的功能、硬件配置、接口特性以及如何利用开发板进行高速数据采集和处理。通过阅读这些文档,开发者可以深入理解开发板的工作原理,学习如何进行系统搭建、编程以及调试。 创龙C6748/OMAPL138+FPGA开发板是一个理想的平台,无论是用于教学、研究还是产品开发,都能提供强大而灵活的解决方案。通过结合高性能的DSP、MCU和FPGA,这款开发板可以处理复杂的实时计算任务,实现高速数据采集和处理,广泛应用于图像处理、语音识别、机器学习等多个领域。开发者可以通过文档资料,逐步掌握开发板的使用方法,充分发挥其潜力,实现创新的设计和应用。
2026-01-06 05:07:03 16.97MB C6748 OMAPL138 TMS320C6748 OMAP-L138
1
fpga图像处理-isp测试用raw图像
2026-01-05 19:46:24 5.35MB fpga图像处理
1
内容概要:本文详细介绍了基于FPGA的永磁同步电机双闭环控制系统的设计与实现。首先,文章探讨了FPGA相对于传统DSP方案的优势,特别是在并行计算和响应速度方面的显著提升。接着,重点讲解了坐标变换模块(如Clarke变换)的Verilog实现,展示了如何通过定点数处理和移位操作来提高计算效率和减少资源消耗。随后,文章深入剖析了速度环和电流环的PI控制器设计,特别是状态机的实现方式以及抗积分饱和和输出限幅的处理技巧。此外,SVPWM生成模块的扇区判断和作用时间计算也被详细解释,强调了定点数乘法比较的应用。硬件设计方面,文章讨论了电流采样电路、IGBT驱动保护、PCB布局优化等细节,确保系统的稳定性和抗干扰能力。最后,文章总结了系统的整体性能表现及其可扩展性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对FPGA和永磁同步电机控制感兴趣的读者。 使用场景及目标:适用于希望深入了解FPGA在电机控制应用中的具体实现方法的技术人员。目标是掌握如何利用FPGA的并行计算特性来优化电机控制系统的性能,包括提高响应速度、降低资源消耗和增强系统的稳定性。 其他说明:文章不仅提供了详细的Verilog代码示例,还分享了许多实用的工程经验,如硬件接口设计和PCB布局优化,帮助读者更好地理解和应用相关技术。
2026-01-04 19:14:39 621KB FPGA Verilog 永磁同步电机 SVPWM
1
内容概要:本文详细介绍了基于FPGA的永磁同步电机双闭环控制系统设计,重点讲解了矢量控制、坐标变换、电流环、速度环、电机反馈接口和SVPWM等关键技术。系统采用Verilog语言实现,提供了详细的程序注解和完整的PCB、原理图,旨在提升电机的性能和稳定性。文章不仅解释了每个模块的功能和实现方法,还展示了各组件间的连接关系和信号流程,帮助读者全面理解系统的运行原理。 适合人群:从事电机控制、嵌入式系统设计、FPGA开发的技术人员,尤其是对永磁同步电机控制感兴趣的工程师。 使用场景及目标:适用于需要深入了解永磁同步电机双闭环控制系统的工作原理及其具体实现的研究人员和工程师。目标是掌握FPGA在电机控制中的应用,特别是矢量控制和SVPWM技术的实现。 其他说明:文章提供的完整PCB和原理图有助于读者进行实际项目开发和实验验证,同时也便于教学和培训使用。
2026-01-04 17:29:28 742KB FPGA Verilog 永磁同步电机 SVPWM
1
XCZU19EG是Xilinx公司生产的一种FPGA芯片,属于ZYNQ UltraScale+ MPSOC系列中的EG系列。ZYNQ UltraScale+ MPSOC系列芯片分为两大类:FPGA系列和SOC系列。FPGA系列包括Spartan、Artix、Kintex和Vertex等产品,主要为纯逻辑芯片;SOC系列则是将FPGA与处理器单元以及常见的处理器外设封装在一起,形成单芯片解决方案。ZYNQ-7000系列是SOC系列中常见的产品,以其性价比高、灵活性大而广泛应用于工业场合。而高端系列中的UltraScale+ MPSOC系列则包括EV和EG两个系列,其中EV系列相比EG系列多出一个Video Codec功能,适用于视频处理。XCZU19EG作为EG系列中的成员,集成了四核Arm Cortex-A53处理器和双核Cortex-R5处理器。 XCZU19EG芯片内部主要由PS(Processing System)和PL(Programmable Logic)两个部分构成,分别负责处理器部分和逻辑部分。PS部分除包含各种Arm核心外,还整合了GPU、DDR控制器以及各种常见的外设如DMA、Watch Dog和高速接口。PL部分则主要负责处理计算、高速连接和IO。此外,PS和PL部分都集成了一个10bit的ADC用于系统监测。 在IO方面,XCZU19EG拥有复杂结构,例如XCZU19EG-2FFVC1760E就拥有1760个管脚。官方文档中的分类图虽然复杂,但能够帮助设计人员理解芯片的IO分布。XCZU19EG的PS部分由三个Multi-function IO组构成,每组包含26个IO。这些IO能够支持常见的外设如串口、I2C、SPI,同时也可以支持SD卡、NAND和eMMC接口。在具体使用中,如串口、QSPI、EMMC等外设的IO接口使用都需要注意正确的配置和布局,以保证芯片正常工作。 对于高速接口,如PCIE、DP、USB、SATA等,XCZU19EG提供了PS-GTR高速收发器bank,包含四对高速收发器和四对时钟。设计人员需要确保参考时钟的差分电平摆幅满足要求,并且时钟信号和数据信号长度要尽量一致,偏差控制在允许范围内。此外,RGMII接口的配置同样需要精准的时序控制,以保证数据的准确传输。 在连接MDIO接口时,需要特别注意管脚对应顺序,以及可能需要通过EMIO来扩展PHY地址的问题。设计人员在实践中应当根据所选用的PHY的具体地址进行灵活配置。 整体上,XCZU19EG作为一种高度集成的FPGA芯片,要求设计人员在进行硬件设计时不仅要熟悉其硬件结构,还要精确掌握各个功能模块的使用方法和性能限制,以及在实际布板时对各种信号的精确处理。
2026-01-04 15:41:49 3.93MB FPGA
1
内容概要:本文详细介绍了基于FPGA的串口接收设计,涵盖了从硬件到软件的完整开发流程。首先,在硬件方面,文章讨论了FPGA的选择与配置、串口接口电路设计以及硬件模块布局,确保系统的高性能和稳定性。接着,在软件开发部分,使用Verilog语言进行编程,确保代码的严谨性和可维护性,并利用ModelSim进行仿真,验证设计的正确性和性能。最后,通过对仿真结果的分析,证明了该设计在时序和性能方面的优越性,适用于各种复杂的通信场景。 适用人群:从事嵌入式系统开发的技术人员,尤其是对FPGA和串口通信感兴趣的工程师。 使用场景及目标:①帮助工程师理解和掌握基于FPGA的串口接收设计方法;②为实际项目提供可靠的硬件和软件设计方案;③提高串口通信系统的稳定性和可靠性。 其他说明:本文不仅提供了详细的理论和技术介绍,还通过具体的实例展示了设计的实际效果,有助于读者更好地理解和应用相关内容。
2026-01-04 15:07:02 865KB
1