内容概要:本文详细介绍了含分布式光伏的30节点状态估计程序的设计与实现。状态估计是电力系统中一项关键技术,旨在精确估算系统各节点的有功无功功率。文中首先解释了状态估计的基本原理,即利用量测数据和数学算法求解系统的状态变量(电压幅值和相角)。随后展示了简化的Python代码实现,涵盖雅克比矩阵计算、状态估计迭代过程以及最终功率计算。特别强调了分布式光伏对接入节点的影响,提出了针对光伏节点的特殊处理方法,如引入光伏出力预测误差作为伪量测,调整雅克比矩阵结构,采用带正则化的改进加权最小二乘法等措施。此外,还讨论了如何处理光伏节点的无功出力范围限制、量测量测配置、状态变量初始化等问题,并提供了残差分析和可视化校验等功能。 适合人群:从事电力系统研究的技术人员、研究生及以上学历的相关专业学生。 使用场景及目标:适用于需要进行电力系统状态估计的研究项目或实际应用中,特别是在含有分布式光伏发电系统的环境中。目标是提高状态估计的准确性,确保电力系统的稳定运行。 其他说明:文中提供的代码示例和方法可以作为进一步研究的基础,同时也指出了实际应用中可能遇到的问题及解决方案。
2025-05-23 10:07:59 310KB
1
A题:芯片热弹性物理参数估计.docx
2025-05-21 11:32:40 242KB
1
基于深度学习网络的5G通信链路信道估计算法
2025-05-19 14:08:05 34.83MB AI
1
内容概要:本文介绍了利用遗忘因子递推最小二乘(FFRLS)和扩展卡尔曼滤波(EKF)进行锂电池荷电状态(SOC)联合估计的方法。首先,FFRLS用于在线辨识电池模型参数,如极化电阻和电容,通过引入遗忘因子使旧数据权重逐渐衰减,从而提高参数辨识的准确性。接着,EKF用于处理SOC的非线性估计,结合辨识得到的参数,通过状态预测和更新步骤实现精确的SOC估计。文中详细解释了算法的具体实现步骤,包括矩阵运算、雅可比矩阵计算以及参数初始化等问题。此外,还讨论了低温环境下算法的表现优化措施,如动态调整遗忘因子和加入参数变化率约束。 适合人群:从事电池管理系统研究和开发的技术人员,尤其是对锂电池SOC估计感兴趣的工程师和研究人员。 使用场景及目标:适用于需要精确估计锂电池SOC的应用场景,如电动汽车、储能系统等。主要目标是提高SOC估计的精度,减少误差,特别是在极端温度条件下。 其他说明:文中提供了详细的代码实现和参考文献,帮助读者更好地理解和应用该算法。建议读者结合实际数据进行调试和验证,确保算法的有效性和稳定性。
2025-05-17 13:37:38 1.22MB
1
朴素贝叶斯分类器可以应用于岩性识别.该算法常使用高斯分布来拟合连续属性的概率分布,但是对于复杂的测井数据,高斯分布的拟合效果欠佳.针对该问题,提出基于EM算法的混合高斯概率密度估计.实验选取苏东41-33区块下古气井的测井数据作为训练样本,并选取44-45号井数据作为测试样本.实验采用基于EM算法的混合高斯模型来对测井数据变量进行概率密度估计,并将其应用到朴素贝叶斯分类器中进行岩性识别,最后用高斯分布函数的拟合效果作为对比.结果表明混合高斯模型具有更好的拟合效果,对于朴素贝叶斯分类器进行岩性识别的性能有不错的提升.
1
根据哥伦比亚、秘鲁和墨西哥个体的饮食习惯和身体状况估计肥胖水平数据集,依据频繁食用高热量食物(FAVC)、食用蔬菜频率(FCVC)、主餐数量(NCP)、两餐之间的食物消耗量(CAEC)、每日饮水量 (CH20)等数据特征,预测人群的肥胖水平(Obesity Prediction),肥胖水平分为7类,分别为体重不足、正常体重、超重I级、超重II级、肥胖I型、肥胖II型和III型肥胖。 利用决策树进行分析预测,内附数据集、源代码、实验分析报告以及可视化结果
2025-05-12 07:44:17 2.54MB 机器学习
1
卡尔曼滤波系列算法在轨迹跟踪与GPS数据处理中的应用:野值剔除与状态估计预测,卡尔曼滤波做轨迹跟踪 鲁棒卡尔曼滤波做野值剔除后的预测 扩展卡尔曼滤波对GPS数据进行状态估计滤波 ,核心关键词:卡尔曼滤波; 轨迹跟踪; 野值剔除预测; GPS数据状态估计滤波。,卡尔曼滤波技术:轨迹跟踪、野值剔除预测与GPS状态估计滤波 卡尔曼滤波技术是现代控制理论中一种非常重要的算法,特别是在处理线性动态系统的状态估计问题上显示出其独到的优越性。在轨迹跟踪和GPS数据处理领域,卡尔曼滤波技术的应用尤为广泛,它能够有效地结合系统模型和观测数据,进行状态估计和预测。在轨迹跟踪中,卡尔曼滤波可以对目标的运动状态进行实时跟踪,并预测其未来的位置,这对于自动驾驶、机器人导航以及各种监测系统来说具有重大的意义。 随着技术的发展,传统的一维卡尔曼滤波算法已不能满足所有场景的需求,因此出现了鲁棒卡尔曼滤波和扩展卡尔曼滤波。鲁棒卡尔曼滤波对系统模型的不准确性或者环境噪声的不确定性具有更强的适应性,它能够剔除数据中的野值,保证状态估计的准确性。而扩展卡尔曼滤波(EKF)则是针对非线性系统状态估计而设计的,它通过线性化非线性系统模型的方式,使得卡尔曼滤波的框架能够应用于更广泛的场合,比如GPS数据的滤波处理。 在实际应用中,卡尔曼滤波算法通常需要依赖于对系统的精确建模,包括系统动态模型和观测模型。系统动态模型描述了系统状态如何随时间演变,而观测模型则描述了系统状态和观测值之间的关系。卡尔曼滤波通过不断迭代执行两个主要步骤:预测和更新,来实现最优的状态估计。在预测步骤中,算法使用系统动态模型来预测下一时刻的状态,而在更新步骤中,算法结合新的观测数据来校正预测值,从而获得更准确的估计。 在处理GPS数据时,卡尔曼滤波技术同样发挥着至关重要的作用。由于GPS信号易受多路径效应、大气延迟等因素的影响,接收到的GPS数据往往包含有较大的误差。利用扩展卡尔曼滤波技术,可以对这些误差进行有效的估计和校正,从而提高GPS定位的精度。这对于车辆导航、航空运输、测绘和各种地理信息系统来说是至关重要的。 除了在轨迹跟踪和GPS数据处理中的应用,卡尔曼滤波技术还被广泛应用于信号处理、经济学、通信系统以及生物医学工程等多个领域。随着科技的进步和算法的不断改进,未来卡尔曼滤波技术有望在更多的领域和更复杂的系统中发挥其独特的作用。 卡尔曼滤波技术以其强大的预测和估计能力,在轨迹跟踪、GPS数据处理等众多领域内都发挥着不可替代的作用。随着算法的不断发展和完善,卡尔曼滤波技术将继续扩展其应用范围,为科技的进步提供有力的支撑。
2025-05-11 00:23:03 910KB
1
利用Radon—Wigner变换与Wigner—Hough估计进行线性调频信号参数的信号参数估计与雷达信号处理中的速度补偿.pdf
2025-05-10 16:09:41 54KB
1
这是年龄性别预算识别Android APP Demo,只安装在安卓手机,实时检测和识别 年龄性别预测1:年龄性别数据集说明(含下载地址)https://blog.csdn.net/guyuealian/article/details/135127124 年龄性别预测2:Pytorch实现年龄性别预测和识别(含训练代码和数据)https://blog.csdn.net/guyuealian/article/details/135556789 年龄性别预测3:Android实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556824 年龄性别预测4:C/C++实现年龄性别预测和识别(含源码,可实时预测)https://blog.csdn.net/guyuealian/article/details/135556843
2025-05-01 20:46:35 45.75MB android 年龄预测 年龄估计 性别识别
1
人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1