在当今电子行业中,USB Power Delivery(USBPD)协议已经成为一种广泛采纳的标准,它支持高功率传输,并允许设备通过USB Type-C接口实现快速充电。STM32G071微控制器系列是STMicroelectronics(意法半导体)生产的一款32位ARM Cortex-M0+处理器,广泛用于低成本、低功耗的嵌入式应用。BQ25713是由德州仪器(Texas Instruments)生产的集成USB-C和PD控制器,用于电源管理和电池充电。 当我们将STM32G071微控制器与BQ25713 PD控制器相结合时,可以实现一个高效的USB Power Delivery解决方案,这在移动设备、笔记本电脑和其它需要快速充电的便携式电子设备中尤为常见。本代码库的目的是为这类应用提供完整的软件支持,使得开发者能够快速构建和部署具有USBPD功能的电子设备。 在文件列表中,CBU6_PD.ioc文件通常是一个项目配置文件,用于IAR Embedded Workbench for ARM环境。.mxproject文件则可能是由Keil MDK-ARM创建的项目文件,用于配置工程的编译环境和设置。 Drivers文件夹包含了STM32G071的硬件抽象层(HAL)和低层(LL)库文件,这些文件是编程STM32系列微控制器的基础,使得开发者可以更容易地进行硬件操作。 Core文件夹中可能包含了启动代码和核心的中间件,这是整个系统的运行基础。 Boot文件夹通常包含微控制器的引导加载程序,这是设备上电后首先执行的代码,负责初始化系统并加载主应用程序。USBPD文件夹是本代码库中的核心,包含了实现USBPD协议的源代码和相关配置,这部分代码需要与BQ25713硬件控制器协同工作,从而实现PD协议规定的电源管理功能。UGUI文件夹可能包含用于实现用户图形界面的代码,允许开发者创建人机交互界面。MDK-ARM文件夹则包含了用于Keil MDK-ARM开发环境的文件,用于编写、编译和调试基于ARM处理器的应用程序。Middlewares文件夹通常包含第三方中间件库,可以提供额外的软件功能,如通信协议栈或图形库等。 这个代码库为基于STM32G071和BQ25713的USBPD应用提供了一套完整的软件解决方案。它不仅包括了硬件相关的驱动程序,还包含了USBPD协议的实现和可能的用户界面支持。开发者可以通过整合这些代码和库,快速地设计出符合USBPD标准的快速充电解决方案。
2025-08-21 15:57:42 1.49MB USBPD
1
Vue.js 是一款非常流行的前端JavaScript框架,用于构建用户界面。Vue油色谱画、大卫三角形和大卫五边形可能是某种特定的项目或概念在Vue.js领域的应用实例,但这些名词在标准的Vue.js文档中并没有直接对应的概念。不过,我们可以从Vue.js的基本特性和这些非标准术语中推测其可能的含义。 1. **Vue.js框架**:Vue.js是由尤雨溪开发的渐进式框架,旨在简化Web应用程序的开发。它通过声明式渲染、组件化、虚拟DOM和生命周期管理等特性,帮助开发者高效构建用户界面。 2. **声明式渲染**:Vue的核心特性之一是其声明式的数据绑定。开发者可以使用模板语法或JSX来定义视图如何响应数据的变化,而无需手动操作DOM。 3. **组件化**:Vue中的组件是可复用的代码块,它们有自己的视图和数据逻辑。通过组件,开发者可以构建复杂的UI结构,实现模块化开发。 4. **生命周期**:每个Vue组件都有其特定的生命周期,包括创建、更新和销毁等阶段。开发者可以在这些阶段内执行特定的操作,如数据初始化、异步请求或销毁前的清理工作。 5. **大卫三角形与大卫五边形**:这些可能是指特定的布局模式或视觉设计元素,用于展示数据或构成界面的一部分。在编程中,三角形和五边形可能暗示了某种几何图形的渲染,或者是某种数据结构的可视化表示。 6. **PD图**:PD图可能是指“性能诊断图”或者某种特定的数据图表,用于分析或展示应用程序的性能指标。在Vue项目中,这可能涉及到Vue的性能优化,比如通过Vue DevTools监控组件渲染性能。 由于提供的信息有限,无法给出更具体的解释。若要深入理解“Vue油色谱画”、“大卫三角形”和“大卫五边形”,可能需要查看项目的源代码或者相关文档。在实际开发中,开发者经常根据项目需求创造自定义的概念和术语,所以这些名词可能是项目内部的专有名词。如果需要具体的技术指导,建议查阅项目的具体文档或向项目团队咨询。
2025-08-07 09:46:26 9KB vue.js
1
ERP中的采购及库存管理系统设计与实现.pd
2025-07-21 14:54:46 4.18MB ERP采购 库存管理 系统设计
1
STM32F030系列微控制器是STMicroelectronics(意法半导体)公司生产的ARM Cortex-M0内核的32位微控制器,广泛应用于低成本、低功耗的嵌入式系统设计中。FUSB302则是由Fairchild Semiconductor(现为ON Semiconductor所有)制造的一款集成了USB Type-C电源传输(USB PD)控制器和USB 2.0全速双角色设备接口的芯片。当STM32F030与FUSB302芯片相结合时,可以实现USB PD协议的电源协议交换(PPS)功能,该功能支持快速充电技术,允许设备通过USB接口安全、高效地获取电源。 USB PD(Power Delivery)是一种通过USB接口实现更高功率传输的通信协议,它可以根据连接的设备和电缆的能力动态地协商和提供不同的电压和电流。PPS(Programmable Power Supply)是USB PD协议的一个扩展,它允许在3.3V至21V的电压范围内提供20mV步进的电压,从而实现更精细的功率控制,这对于快充技术尤其重要,因为它可以减少充电时的能量损失并缩短充电时间。 在使用STM32F030微控制器与FUSB302芯片实现USB PD PPS功能时,开发者需要掌握C语言编程技能,并且对USB PD协议和STM32F030的硬件特性有深入了解。为了编程实现这一功能,开发者需要熟悉STM32F030的硬件抽象层(HAL)库或直接操作其寄存器来配置GPIO、I2C、UART等接口,这样才能与FUSB302芯片进行通信。此外,还需要编写相应的软件协议栈来支持USB PD PPS的通信协议。 实现USB PD PPS功能后,该系统可以被设计为一个电源适配器或充电器,为各种设备提供电源。例如,智能手机、平板电脑、笔记本电脑等都可以通过这样的USB PD PPS系统进行快速充电。由于USB PD PPS协议支持电源管理,它还可以帮助延长设备的电池寿命,提升用户体验。 在软件层面,开发者需要编写代码来初始化STM32F030和FUSB302芯片,并建立一个能够处理USB PD事件和命令的软件框架。这意味着在软件中需要实现对电源策略、电源请求和电源供应配置的管理。同时,还需要实现对USB PD通信的监听、响应和电源策略的调整。在硬件层面,除了微控制器和PD控制器之外,还需要设计电路来支持大功率供电,包括电源管理和保护电路等。 使用STM32F030微控制器和FUSB302芯片实现USB PD PPS快充功能是一个涉及硬件设计和软件编程的复杂过程。它不仅需要对USB PD协议有深入的理解,还需要在嵌入式系统设计和编程方面具备丰富的经验。成功实现后,它能够为多种设备提供高效、安全和便捷的充电解决方案。
2025-07-20 15:21:13 328KB USBPD STM32F030
1
机载PD雷达下视几何关系 * * 天线主瓣 天线旁瓣 机载下视雷达的地面杂波被分为: 主瓣杂波区 旁瓣杂波区 高度线杂波区 -> 天线波束主瓣照射区的地面杂波 -> 视角范围宽广的天线旁瓣照射的杂波 -> 雷达正下方的地面回波 杂波的多普勒频率分布取决于: ① 雷达平台速度(速度和方向) ② 平台相对地面照射点的几何关系
2025-05-23 11:17:28 3.5MB PPT 机载雷达
1
Typec及PD培训.xlsx
2025-05-21 23:10:25 5.46MB
1
Parallels Desktop 是 Mac 上一款运行快速、操作简单、功能强大的应用程序,无需重启即可在您的 Intel 或 Apple M1 Mac 上运行 Windows。包含 30 多种一键式工具,可简化 Mac 和 Windows 上的日常任务。可运行数千种 Windows 应用程序,如 Microsoft Office、Internet Explorer、Access、Quicken、QuickBooks、Visual Studio,甚至支持对图像要求较高的游戏和 CAD 项目,而不影响任何性能且无需重启。在下使用应用程序时,您可以隐藏 Windows,或者如果您是初次使用 Mac,则可以将 Windows 设置为占据整个屏幕,就像是在使用 Windows PC 一样。
2025-04-09 12:50:42 307.16MB macos
1
标题中的“优化分数阶PD滑模控制器:灰狼优化器优化的分数阶PD滑模控制器,第二个代码-matlab开发”表明我们正在讨论一个利用MATLAB编程环境开发的控制系统设计,具体是基于灰狼优化器(Grey Wolf Optimizer, GWO)的分数阶PD滑模控制器。这个控制器设计是针对系统优化和控制性能提升的一个实例。 我们要理解分数阶微分方程在控制系统中的应用。与传统的整数阶微分方程相比,分数阶微分方程能更精确地描述系统的动态行为,因为它考虑了系统记忆和瞬时效应的混合。分数阶PD控制器(Fractional-Order Proportional Derivative, FOPD)结合了比例(P)和导数(D)的分数阶特性,可以提供更精细的控制响应,如改善超调、减小振荡等。 接下来,滑模控制(Sliding Mode Control, SMC)是一种非线性控制策略,它通过设计一个滑动表面,使系统状态在有限时间内滑向该表面并保持在上面,从而实现对系统扰动的鲁棒控制。分数阶滑模控制器则将滑模控制理论与分数阶微分方程结合,增强了控制的稳定性和抗干扰能力。 灰狼优化器(GWO)是一种基于群智能算法的全局优化方法,模拟了灰狼狩猎过程中的领导、搜索和合作策略。在本案例中,GWO被用于优化分数阶PD控制器的参数,寻找最佳的控制器设置,以最大化控制性能,比如最小化误差、改善响应速度和抑制系统振荡。 在MATLAB中实现这样的控制器设计,通常包括以下步骤: 1. **模型建立**:需要建立系统模型,这可能是一个连续时间或离散时间的分数阶动态系统。 2. **控制器设计**:设计分数阶PD控制器结构,并确定其参数。 3. **优化算法**:利用GWO或其他优化算法调整控制器参数,以达到预定的控制性能指标。 4. **仿真与分析**:在MATLAB环境下进行系统仿真,观察控制器对系统性能的影响,如上升时间、超调、稳态误差等。 5. **结果评估**:根据仿真结果评估控制器性能,可能需要迭代优化过程以找到最优解。 压缩包中的“upload.zip”文件可能包含了MATLAB源代码、控制器设计的详细说明、系统模型数据以及仿真实验的结果。通过解压并研究这些文件,我们可以深入理解如何应用GWO优化分数阶PD滑模控制器的具体实现细节和优化过程。 这个项目展示了如何结合现代优化算法(GWO)和先进的控制理论(分数阶滑模控制)来改善系统的控制性能,对于理解和应用这类技术在实际工程问题中具有重要的参考价值。
2025-04-08 18:35:16 5KB matlab
1
CS5366原理图,CS5366设计电路图,带PD充电2lane 4K60HZ TypeC转HDMI2.0扩展坞方案设计参考电路,Type-C转HDMI 2.0 4K60+USB 3.0+PD3.1/3.0高集成度视频转换芯片方案 2. 集成DSC1.2a decoder, 不仅支持2 lane 8.1G的source, 也支持2 lane 5.4G输出4K60 video 3. DSC支持RGB, YCbCr4:4:4, YCbCr4:2:2, Native YCbCr4:2:2, YCbCr4:2:0, 实现4K60 【CS5366带PD充电2lane 4K60HZ TypeC转HDMI2.0扩展坞方案原理图】 此方案的核心是CS5366芯片,它是一款高集成度的视频转换器,专为Type-C转HDMI 2.0的扩展坞设计。该芯片能够支持2lane 8.1Gbps的数据传输速度,同时也能在2lane 5.4Gbps的速率下输出4K60Hz的高清视频。CS5366集成了DSC1.2a解码器,能够处理多种色彩格式,包括RGB、YCbCr4:4:4、YCbCr4:2:2、Native YCbCr4:2:2以及YCbCr4:2:0,以实现高质量的4K60Hz视频输出。 在电路设计中,关键的pin脚如HDMI_SCL和HDMI_SDA用于调试,通常需要通过10Kohm的电阻连接到LDO33_OUT。5V_IN输入需要2ohm的电阻以防止过电压损伤(EOS)。HDMI_HPD(Hot Plug Detect)则通过1Kohm的电阻连接,同样是为了保护设备免受EOS的影响。此外,LDO12_OUT、LDO33_OUT、LDO09_OUT和LDO_ISNK等电源引脚管理着不同部分的电源供应,确保整个系统的稳定运行。 CS5366的电源管理包括VDD09、VDD18、VBUS_DVBUS_ULDO_ISNK等,这些电源引脚负责为芯片的不同功能区提供所需的电压。VBUS相关的引脚,如VBUS_DVBUS_MON、VBUS_MON_UP和VBUS_MON_D,用于监控Type-C端口的电源状态,确保PD(Power Delivery)充电功能的正常工作。同时,DOWN_VBUS_EN和DOWN_VBUS_DIS控制VBUS的开启和关闭,而UP_VBUS_EN和UP_VBUS_DIS则分别用于控制上行和下行方向的VBUS状态。 扩展坞方案还包含了GPIO(通用输入/输出)接口,如GPIO9、GPIO8、GPIO5、GPIO4、GPIO2和GPIO1,这些接口可以灵活地配置为输入或输出,以适应不同的扩展需求,例如连接USB 3.0设备。此外,TEST_EN脚用于进行系统测试,以验证整个转换和扩展方案的功能。 总结来说,这个CS5366型扩展坞方案利用了CS5366芯片的强大视频转换能力,实现了Type-C到HDMI 2.0的高速数据传输,并且具备PD充电功能。电路设计中考虑了电源管理、保护措施和灵活性,确保了稳定和高效的视频输出以及扩展功能。这样的解决方案适用于需要高清视频输出和多设备连接的场景,比如会议演示、家庭娱乐系统或专业工作站。
2025-03-14 09:51:00 229KB
1
USB PD 是由 USB-IF 组织制定的一种快速充电规范,是目前主流的快充协议之一。 USB PD 快充协议是以 USB Type-C 接口输出的,但不能说有 USB Type-C 接口就一定支持 USB PD 协议快充。 QC3.0是高通推出的第三代快充协议,QC3.0充电器就是搭载高通Quick Charge 3.0快速充电技术的充电器。 PD快充协议是由 USB-IF 组织制定的一种快速充电规范,是目前主流的快充协议之一, 值得一提的是USB-PD 快充协议是以 Type-C 接口输出的。 本电路是一款20W-PD附带QC3.0的Type-C口充电器电路高清电路原理图,供大家参考学习!QC3.0快充协议 ### 20W PD快充电源充电器电路原理分析 #### 一、USB PD与QC3.0快充协议概述 在当前电子设备快速发展的背景下,充电效率成为了用户关注的重点。USB PD(Power Delivery)快充协议作为一种由USB-IF组织制定的规范,已经成为主流的快速充电标准之一。该协议通过USB Type-C接口实现高效电力传输,最大功率可达100W以上,能够满足大多数便携式电子设备的需求。 另一方面,QC3.0(Quick Charge 3.0)则是由高通公司推出的一项快速充电技术,主要应用于高通处理器的移动设备上。QC3.0相较于前代QC2.0,在充电效率和兼容性方面有了显著提升,能够实现更智能的电压调节功能,从而提高充电速度同时减少热量产生。 #### 二、20W PD附带QC3.0的Type-C口充电器电路设计解析 本次分享的电路原理图展示了一款结合了USB PD和QC3.0两种快充协议的20W充电器设计方案。下面将对该方案中的关键元件及工作原理进行详细解读。 ##### 1. 输入整流滤波电路 输入部分采用了常见的桥式整流电路结构,并配合电容C2、C3进行滤波处理。其中,C2为225μF/25V,C3为105μF/25V,这些电容主要用于平滑整流后的直流电压,减少纹波干扰,确保后续电路的稳定工作。 ##### 2. 开关电源主控电路 该电路使用了一款型号为SW8N65的开关管作为核心控制元件,其额定耐压值为650V,适用于20W级别的充电器应用。此外,R12为200Ω,用于限制开关管的基极电流,避免过载损坏。 ##### 3. 反馈稳压电路 反馈稳压电路采用APC817光电耦合器与U2(WT6615)芯片组合实现。APC817负责将输出电压的变化信号转化为光电信号传递给WT6615芯片,进而调整PWM占空比来稳定输出电压。其中,R21(1.5MΩ)、R22(1.5MΩ)为分压电阻,用于设定反馈电压基准点;R28(200KΩ)则用于调整反馈灵敏度。 ##### 4. 输出保护与识别电路 - **输出保护电路**:电路中包含了对输出短路、过载等异常情况进行保护的设计。例如,D1(RS1010FL)为输出保护二极管,能够在负载端出现异常时切断电源输出。 - **协议识别电路**:为了实现对不同快充协议的支持,电路中加入了协议识别电路。这部分涉及到的元件较多,如R45(1KΩ)、R48(4.7KΩ)等电阻以及C12(471pF/50V)电容,它们共同参与了协议握手过程中的电压等级调整,以匹配USB PD或QC3.0等不同快充协议的要求。 #### 三、电路原理图细节解析 根据提供的电路图代码片段,我们可以进一步了解其具体构成: - **电容C1(471μF/50V)**:位于输入端,用于滤除市电中的高频杂波。 - **电阻R10(10mΩ/1206)**:与C1并联,起到泄放电容存储电荷的作用,确保安全。 - **晶体管Q6(WSD30L40DW)**:作为次级同步整流管使用,降低导通损耗,提高转换效率。 - **二极管D1(RS1010FL)**:输出保护二极管,防止反向电流损害电源模块。 通过上述分析可以看出,这款20W PD附带QC3.0的Type-C口充电器电路设计考虑周全,不仅兼顾了快充协议的兼容性,还注重了电路的稳定性和安全性。对于从事电源产品开发的技术人员来说,该设计方案具有较高的参考价值。
2024-08-16 16:23:10 59KB
1