乳腺癌检测应用 使用机器学习XGBoost分类器的乳腺癌检测应用程序
2023-11-24 14:16:10 1.94MB HTML
1
基于注意力的深度多实例学习 基于注意力的深度多实例学习可以应用于广泛的医学成像应用。 在项目“ ”@ ,我在 ICML 2018 论文“Attention-based Deep Multiple Instance Learning”( )中撰写了Keras版本这个 repo 为 Keras 用户分享解决方案。 可以在找到官方 Pytorch 实现。 我使用Tensorflow后端建造它与Keras。 我编写了论文中描述的注意力层,并在结肠图像中进行了 10 倍交叉验证的实验。 我得到了论文中描述的非常接近的平均准确率,可视化结果如下所示。 部分代码来自 。 在训练模型时,我们只使用图像级标签(0 或 1 以查看它是否是癌症图像)。 注意层可以通过仅呈现积极补丁的一小部分子集来提供对决策的解释。 我的实施结果 数据集 结肠癌数据集 已处理的补丁 我把我处理的数据放在这里,你也可以
1
Crime-Prediction:客户的犯罪预测,数据集由客户提供
2023-06-14 11:07:33 371KB Python
1
使用PySpark的贷款默认预测 使用Lending Club中包含100万以上行的数据集将贷款预测为违约/非违约 整个项目是在单个群集的Databricks云环境中完成的
2023-05-12 17:03:23 1.44MB HTML
1
蛋白质金属结合位点预测 投稿人:田秋,郑子涵,金文浩 生物学意义: 蛋白质及其结构是生命中生物学功能的关键。 通过翻译,核糖体将延长氨基酸序列链,这些氨基酸的物理化学特性及其相互依赖性使一级结构折叠成其复杂的三级结构。 一旦建立了结构,蛋白质结构可能会允许某些离子结合,这可能导致该结构通过构象变化更稳定,或有助于催化。 例如,锌指稳定结构,或血红素基团中离子的必要性,以使血红蛋白转运氧气。 另外,结合位点的序列和结构往往在整个世代中都被保守,并且来自蛋白质数据库(PDB)的大约1/3的蛋白质结构包含金属离子这一事实可能表明它显着干预了蛋白质的行为。 目标 : 我们的兴趣是利用一个突出的神经网络来识别哪些金属与哪个序列结合,以及该金属与哪些氨基酸特异性结合。 我们的目标是将金属分类为准确度为95%的序列。 我们的目标是对哪些氨基酸与F1分数达75%的金属结合进行分类。 概述: [
2023-04-09 12:39:17 316.17MB JupyterNotebook
1
沃伦-股票价格预测器 股市预测是试图确定公司股票或在交易所交易的其他金融工具的未来价值的行为。 成功预测股票的未来价格可能会产生可观的利润。 有效市场假说表明,股票价格反映了所有当前可用的信息,因此,任何不基于新发现信息的价格变化本质上都是不可预测的。 其他人则不同意,并且拥有这种观点的人拥有无数的方法和技术,据称它们可以获取未来的价格信息。 在这里,我们利用Facebook的时间序列预测算法Prophet,使用多变量,单步预测策略,实时预测美国公司的股票市场价格。 入门 从github下载或克隆项目 $ git clone https://github.com/nityansuman/wa
2023-04-07 10:52:14 1.28MB python flask neural-networks stock-price-prediction
1
肺炎的预测 使用迁移学习预测肺炎(计算机视觉) Inception v3是一种广泛使用的图像识别模型,已显示在ImageNet数据集上达到了78.1%以上的精度。 该模型是多年来由多个研究人员提出的许多想法的集合。 它基于原始论文:Szegedy等人的“重新思考计算机视觉的初始架构”。 al。 该模型本身由对称和不对称的构建块组成,包括卷积,平均池,最大池,连接,丢失和完全连接的层。 Batchnorm在整个模型中得到广泛使用,并应用于激活输入。 损耗是通过Softmax计算的。 我们已经对模型进行了微调,以使其可以用于2个新的不同类的分类。 记住要安装requirements.txt
2023-04-01 13:53:06 52KB JupyterNotebook
1
基于不平衡数据的Python_Health-Insurance-交叉销售预测 在该项目中,我们将现代机器学习技术应用于保险单持有人的数据,以分析和预测其行为。 使用Python语言,我们对数据的处理方法产生了令人兴奋的见解,可以帮助保险公司进行业务建模。
2023-03-17 18:20:03 6.05MB JupyterNotebook
1