【BP预测】基于Tent混沌映射原子搜索算法优化BP神经网络实现数据回归预测附matlab代码
2022-05-15 23:28:31 704KB
1
可用于UnityVR开发,3D游戏开发,高清天空盒子Skybox素材,游戏环境背景素材,无水印。 让你身临其境的天空盒子,各类题材丰富,都是辛苦搜罗所得的高清exr格式,可以直接用于Unity开发,特别是VR游戏的开发。 内景、外景、城市、乡间、日出,夜晚,欧式宫殿,中式园林,应有尽有,可以在我的下载频道选择需要的下载。 注意,由于是高清,所以体积较大(大的可以达到500M),请下载前预留合适的空间。 使用方法: 1-导入Unity后将图片的Shape转换成cube形式, 2-创建空Material,并转换成Cube/skybox形式, 3-将图片拖入新建的SkyboxMaterial, 4-用刚创建的Material代替项目中原本的系统默认Skybox
2022-05-08 09:09:32 345.33MB vr unity skybox 天空盒子
针对标准飞蛾扑火优化算法存在的易陷入局部最优陷阱、全局寻优能力不足的问题,借鉴混沌序列、模拟退火算法和遗传算法,提出Tent混沌和模拟退火改进的飞蛾扑火优化算法。首先,通过Tent混沌序列初始化种群,增加种群多样性;然后对当前最优解增加扰动产生新解,并与当前最优解按比例杂交相加,根据模拟退火算法中的Metropolis准则判断是否接受杂交后的新解,最终获得最优解。分别使用复杂高维基准函数和航迹规划问题测试算法性能。其中,6个复杂基准函数寻优测试结果表明,对于10维基准函数,该算法经过约0.25秒收敛到最优值;对于50维基准函数,该算法经过约0.5秒收敛到最优值。与标准飞蛾扑火优化算法和其它智能优化算法相比,该算法能够有效跳出局部最优解,寻优精度更高,收敛速度更快。航迹规划仿真表明,对有4个禁飞区和2个威胁源的空域环境,该算法经过大约100次迭代可以得到最优航迹,与标准飞蛾扑火优化算法相比精度更高,具有实际应用价值。因此,该算法具有更好的寻优性能。
1
OhMyForm TypeForm的开源替代方案,可以创建出色的移动就绪型表单,调查和问卷。 目录 产品特点 当前实现了以下功能: - Multi-Language Support (Semi implemented) - 11 possible question types - Editable start and end pages - Export Submissions to XLS, JSON or CSV - Native Analytics and Google Analytics Support - Custom Subdomains for each User - Embeddable Forms - Forms as a Service API 在v1.0.0的路线图上 - Implement encryption for all form data - Add Typeform API integration - Add plugin/3rd party integration support (ala Slack) - Create wiki for easy
2022-01-07 17:39:24 54KB docker docker-compose forms container
1
构建基于改进灰狼优化算法的神经网络数据预测模型(IGWO-BPNN),目的在于用改进的灰狼优化算法优化神经网络模型,利用神经网络的反向传播优势,改善神经网络算法易于陷入局部最小值的缺陷,提高神经网络模型的预测精度。
2021-12-22 18:26:19 2KB IGWO 改进预测 神经网络 改进灰狼
一种基于Tent映射的混合灰狼优化的改进算法(含代码).zip
2021-12-09 11:08:02 10KB Tent映射 混合算法
针对人工蜂群和粒子群算法的优势与缺陷, 提出一种Tent 混沌人工蜂群粒子群混合算法. 首先利用Tent 混沌反向学习策略初始化种群; 然后划分双子群, 利用Tent 混沌人工蜂群算法和粒子群算法协同进化; 最后应用重组算子选择最优个体作为跟随蜂的邻域蜜源和粒子群的全局极值. 仿真结果表明, 该算法不仅能有效避免早熟收敛, 而且能有效跳出局部极值, 与其他最新人工蜂群和粒子群算法相比具有较强的全局搜索能力和局部搜索能力.
1
万有引力搜索算法(gravitational search algorithm,GSA)相比于传统的优化算法具有收敛速度快、开拓性能强等特点,但GSA易陷入早熟收敛和局部最优,搜索能力较弱.为此,提出一种基于改进的Tent混沌万有引力搜索算法(gravitational search algorithm based on improved tent chaos,ITC-GSA).首先,改进Tent混沌映射来初始化种群,利用Tent混沌序列随机性、遍历性和规律性的特性使得初始种群随机性和遍历性在可行域内,具有加强算法的全局搜索能力;其次,引入引力常数G的动态调整策略提高算法的收敛速度和收敛精度;再次,设计成熟度指标判断种群成熟度,并使用Tent混沌搜索有效抑制算法早熟收敛,帮助种群跳出局部最优;最后,对10个基准函数进行仿真实验,结果表明所提算法能够有效克服GSA易陷入早熟收敛和局部最优的缺点,提高算法的收敛速度和寻优精度.
1
为避免粒子群算法后期出现早熟收敛,提出一种基于Tent映射的自适应混沌嵌入式粒子群算法。将混沌变量嵌入到标准粒子群算法中,且对参数进行自适应调整。算法采用Tent映射生成的混沌序列来取代基本粒子群算法中的随机数,充分利用了混沌运动的随机性、遍历性和规律性;惯性权重和学习因子采用非线性的自适应调整策略;建立平均粒距与适应度方差相结合的早熟收敛判断机制,并且以混沌搜索的方式来跳出局部最优。测试函数仿真结果表明,该算法具有良好的全局搜索能力,寻优精度较高,鲁棒性好。
2021-11-22 11:20:46 592KB 论文研究
1
【BP预测】基于Tent混沌映射改进麻雀算法改进BP神经网络实现数据预测matlab源码.zip
2021-11-12 18:58:45 1.42MB 简介
1