灰狼算法(GWO)优化极限梯度提升树XGBoost时间序列预测,GWO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-27 17:36:46 54.69MB
1
内容概要 资源包括三部分(时间序列预测部分和时间序列分类部分和所需的测试数据集全部包含在内) 在本次实战案例中,我们将使用Xgboost算法进行时间序列预测。Xgboost是一种强大的梯度提升树算法,适用于各种机器学习任务,它最初主要用于解决分类问题,在此基础上也可以应用于时间序列预测。 时间序列预测是通过分析过去的数据模式来预测未来的数值趋势。它在许多领域中都有广泛的应用,包括金融、天气预报、股票市场等。我们将使用Python编程语言来实现这个案例。 其中包括模型训练部分和保存部分,可以将模型保存到本地,一旦我们完成了模型的训练,我们可以使用它来进行预测。我们将选择合适的输入特征,并根据模型的预测结果来生成未来的数值序列。最后,我们会将预测结果与实际观测值进行对比,评估模型的准确性和性能。 适合人群:时间序列预测的学习者,机器学习的学习者, 能学到什么:本模型能够让你对机器学习和时间序列预测有一个清楚的了解,其中还包括数据分析部分和特征工程的代码操作 阅读建议:大家可以仔细阅读代码部分,其中包括每一步的注释帮助读者进行理解,其中涉及到的知识有数据分析部分和特征工程的代码操作。
2024-01-26 20:05:19 407KB python 机器学习
1
xgboost算法教程,( 8-xgboost.pdf ) ( 8-xgboost.pdf是(xgboost的简明教程
2023-12-10 13:58:08 932KB xgboost
1
麻雀算法(SSA)优化极限梯度提升树XGBoost回归预测,SSA-XGBoost回归预测模型,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2023-11-08 16:04:11 54.69MB
1
twitter_sentiment_bert_scikit Twitter美国航空数据集情感分析(情感分析),使用Bert句子编码作为特征,实现了SVM,XGBoost,RandomForest(随机森林)等多个分类算法,从而进行了交叉验证。 数据来自 预安装 我们在Python 3环境中运行该项目,建议您使用Anaconda 3通过以下脚本安装所需的软件包。 当然,您可以使用pip进行安装。 conda create -n tweet_sentiment -c anaconda python=3.7 numpy scikit-learn xgboost pandas tensorflo
1
调试不好联系我,刚注册账号不清楚
2023-05-18 15:36:04 3.45MB xgboost matlab
1
引入加法模型在给定了训练数据和损失函数的条件下,可以通过损失函数最小化来学习加法模型然而对于这个问题是个很复杂的优化问题,而且要训练的参数非常的多,前向分布算法
2023-05-11 19:30:20 2.12MB
1
遗传算法GA优化xgboost模型,python书写,代码用第三方数据集
2023-04-29 13:23:12 2KB python 软件/插件 数据集
1
xgboost代码回归matlab 神经解码: 包含许多用于解码神经活动的方法的python软件包 该软件包包含经典解码方法(维纳滤波器,维纳级联,卡尔曼滤波器,支持向量回归)和现代机器学习方法(XGBoost,密集神经网络,递归神经网络,GRU,LSTM)的混合。 当前设计解码器来预测连续值的输出。 将来,我们将修改功能以允许分类。 该程序包随附一个,用于比较这些方法在多个数据集上的性能。 如果您在研究中使用我们的代码,请引用该手稿,我们将不胜感激。 依存关系 为了运行所有基于神经网络的解码器,您需要安装为了运行XGBoost解码器,您需要安装为了运行维纳滤波器,维纳级联或支持向量回归,您将需要。 入门 我们提供了jupyter笔记本,其中提供了有关如何使用解码器的详细示例。 文件“ Examples_kf_decoder”用于卡尔曼滤波器解码器,文件“ Examples_all_decoders”用于所有其他解码器。 在这里,我们提供一个使用LSTM解码器的基本示例。 对于此示例,我们假设我们已经加载了矩阵: “ neural_data”:大小为“时间段总数” x“神经元数量”的矩
2023-03-31 18:25:09 48.99MB 系统开源
1
'''内置建模方式 1.xgb.train训练方式 2.DMatrix数据形态,不是DataFrame ''' import numpy as np import scipy.sparse import pickle import xgboost as xgb dtrain = xgb.DMatrix('data/agaricus.txt.train') dtest = xgb.DMatrix('data/agaricus.txt.test') #超参数设定 ''' max_depth:用于设置树的最大深度,默认为6,范围为:》1 eta:可以看作为学习率 为了防止过拟合,更新过程中用到的收缩
2023-03-29 10:11:53 36KB gb st xgboost
1