MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测, 数据为多变量时间序列数据,多输入单输出,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上,运行主程序CNN_BiLSTM即可。
MATLAB实现TPA-BiLSTM时间注意力机制双向长短期记忆神经网络时间序列预测(完整源码和数据) 数据为多变量时间序列数据,多输入单输出 运行环境MATLAB2020b及以上,运行主程序TPAMain即可。
回归预测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。
回归预测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。
命名实体识别是自然语言处理的一项关键技术. 基于深度学习的方法已被广泛应用到中文实体识别研究中. 大多数深度学习模型的预处理主要注重词和字符的特征抽取, 却忽略词上下文的语义信息, 使其无法表征一词多义, 因而实体识别性能有待进一步提高. 为解决该问题, 本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法. 首先通过BERT模型预处理生成基于上下文信息的词向量, 其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理. 实验结果表明, 该模型在MSRA语料和人民日报语料库上都达到相当不错的结果, F1值分别为94.65%和95.67%.
1
行业分类-物理装置-一种基于双向长短期记忆网络的定位修正方法.zip
使用双向长短期记忆 (biLSTM) 进行需求预测这是一个回归问题。 在这个问题中,我们想根据过去记录中的 3 个因素来预测未来的需求。 您可以更改选择的数量(过去的记录数量)。 此外,您可以更改输入的数量。 例如,您也可以包括过去的需求,或删除一些输入。
2021-07-23 19:08:19 1.24MB matlab
1
近年来, 随着人工智能的发展, 深度学习模型已在ECG数据分析(尤其是房颤的检测)中得到广泛应用. 本文提出了一种基于多头注意力机制的算法来实现房颤的分类, 并通过PhysioNet 2017年挑战赛的公开数据集对其进行训练和验证. 该算法首先采用深度残差网络提取心电信号的局部特征, 随后采用双向长短期记忆网络在此基础上提取全局特征, 最后传入多头注意力机制层对特征进行重点提取, 通过级联的方式将多个模块相连接并发挥各自模块的作用, 整体模型的性能有了很大的提升. 实验结果表明, 本文所提出的heads-8模型可以达到精度0.861, 召回率0.862, F1得分0.861和准确率0.860, 这优于目前针对心电信号的房颤分类的最新方法.
1