在本篇中,我们将深入探讨华为WLAN网络中的同一AC内AP之间三层漫游的配置。三层漫游是指在同一AC管理下的不同AP之间,当无线客户端在不同业务VLAN之间漫游时,其IP地址和业务VLAN保持不变,仅通过不同的AP转发数据。这在多VLAN环境中尤其重要,例如在上述办公区域的例子中,AP-1服务于VLAN 101,AP-2服务于VLAN 102,用户应能在整个区域自由漫游而不影响网络连接。 我们需要对网络基础设备进行初始化配置。对于POE二层交换机,我们需要创建VLAN并定义Trunk链路。VLAN 100通常作为管理VLAN,VLAN 101和102为业务VLAN。Trunk链路允许这些VLAN的数据在交换机之间传输。以下是一个示例配置: ```shell [Huawei-AS-1]vlan batch 101 102 800 # 创建VLAN 101, 102 和 800 [Huawei-AS-1]int e0/0/1 # 进入接口0/0/1 [Huawei-AS-1-Ethernet0/0/1]port link-type trunk # 设置接口为Trunk类型 [Huawei-AS-1-Ethernet0/0/1]port trunk pvid vlan 800 # 将接口默认VLAN设置为800 [Huawei-AS-1-Ethernet0/0/1]port trunk allow-pass vlan 101 to 102 800 # 允许VLAN 101, 102 和 800通过 ``` 接下来,核心交换机的配置包括VLAN创建、Trunk链路定义、DHCP服务和VLANIF接口及路由。VLANIF接口用于VLAN间的通信,路由则确保不同VLAN间的数据包能正确转发。同时,还需要配置出口路由器,包括内外网接口、路由和NAT服务,以确保外部网络的连通性。 AC(Access Controller)初始化涉及Trunk配置和VLANIF接口创建,允许AP通过Trunk链路发送和接收不同VLAN的数据,并且需配置相应的DHCP Option43,以支持SSID的广播和AP的发现。 在三层漫游的场景中,AP需要识别并处理多个业务VLAN的流量。例如,AP-1不仅为VLAN 101提供服务,同时也为VLAN 102提供转发服务,同样,AP-2也是如此。为了实现这一目标,AP需要具备处理和标记业务VLAN标签的能力。 总结起来,实现同一AC内AP之间三层漫游的关键步骤包括: 1. POE二层交换机的VLAN创建和Trunk链路设定。 2. 核心交换机的VLAN、Trunk、DHCP、VLANIF接口和路由配置。 3. 出口路由器的接口、路由和NAT配置。 4. AC的VLAN Trunk和VLANIF接口创建。 5. AP对多个业务VLAN的支持和识别。 了解并熟练掌握这些配置步骤对于构建稳定、高效的三层漫游WLAN网络至关重要。在后续的文章中,将进一步介绍AC上的WLAN业务配置,这将帮助我们更好地理解如何在实际应用中实现和优化漫游体验。
2025-05-26 13:33:07 406KB 网络 网络协议
1
标题《无线同时同频全双工中射频信道隔离的影响分析》所涉及的知识点主要集中在无线通信技术中的一种高级模式——同时同频全双工(Co-time Co-frequency Full Duplex,CCFD)技术。该技术允许无线终端在同一频率上同时进行发送和接收操作,大幅度提升了频谱效率,这是当前无线通信系统研究中的一个热门话题。 对全双工技术的理解至关重要。全双工(Full Duplex)指的是数据在两个方向上同时进行传输的能力。在传统的无线通信系统中,为了避免发送和接收信号之间的干扰,通常采用半双工(发送和接收分开进行)或者频分双工(FDD,使用不同的频率进行发送和接收)等方式。而CCFD技术则允许在同一频率上同时进行发送和接收,这样可以节省宝贵的频谱资源,并且理论上能够翻倍通信容量。 然而,CCFD操作的主要实际障碍之一是存在自干扰(Self-Interference),即发射机对自身的接收机造成的干扰。自干扰的存在会严重干扰通信质量。因此,为了更好地抑制自干扰,通常会利用射频(Radio Frequency,RF)反馈链路来提供一个参考的自干扰信号。自干扰消除(Self-Interference Cancellation,SIC)技术成为CCFD技术能否成功应用的关键。 在分析中提到,理想的SIC性能是建立在完美的射频链路隔离上的,但在实际的工程项目中很难实现。射频链路不完美隔离导致的射频信号泄露会对SIC性能造成影响。因此,该论文的重点分析了射频链路隔离对SIC性能的影响,并从数学角度进行了推导和验证。 具体而言,研究首先给出了系统模型的简要描述,然后描述了射频泄露信号,接着利用射频泄露信号估计了自干扰信号。由于射频链路隔离的问题,估计的自干扰信号并不准确,因此文章分析了射频链路隔离对于SIC性能的影响。 在技术层面,文中涉及的关键技术点和概念包括: 1. 同时同频全双工(CCFD)技术:探讨了该技术的工作原理及其在提升频谱效率方面的潜力。 2. 自干扰(Self-Interference)问题:研究了自干扰的成因及其对通信系统性能的影响。 3. 自干扰消除(Self-Interference Cancellation,SIC):讨论了在实际中有效消除自干扰的方法和技术。 4. 射频链路隔离:分析了射频链路隔离不完美时对自干扰消除性能的具体影响。 5. 射频泄露信号:描述了射频泄露的机理及其对系统性能的影响。 6. 数学建模:提出了数学模型来分析和估计自干扰信号,以及射频链路隔离对SIC性能的影响。 论文的作者们来自于不同的研究机构和大学,如成都信息工程大学通信工程学院、电子科技大学国家电子科技重点实验室、中国石化集团公司地球物理重点实验室等,体现了该论文研究的跨学科和国际协作的特点。 这篇论文的发布平台是“国际感知与成像会议”的会议论文集,体现了其在无线通信技术领域的学术价值和应用前景。通过深入分析射频信道隔离对自干扰消除性能的影响,该研究为无线通信领域的工程师和研究者提供了宝贵的数据和理论支持,有助于在实际项目中更有效地实现CCFD技术。 该研究论文不仅对无线通信领域的基础理论有所贡献,更为未来通信设备的设计和优化指明了方向,尤其是在提高频谱使用效率和降低自干扰方面具有重大意义。
2025-05-20 18:36:09 361KB 研究论文
1
同频同时全双工是第五代移动通信(5G)提出的核心概念之一,其关键技术为自干扰抵消。其中数字抵消具备灵活高效的优势,进一步提高其性能是降低全双工节点的成本、功耗和复杂度的重要途径。首先介绍了基本数字抵消算法——信道估计重构法的原理;然后从提高自适应性、提高自干扰信号还原准确性以及实现简化三个角度介绍了改进算法;最后,展望了全双工数字自干扰抵消算法未来的研究方向,为全双工架构和算法设计提供参考。
1
针对同时同频全双工场景中,宽带射频自干扰抵消方案缺乏性能分析这一问题,以多抽头射频域自干扰抵消结构为基础,以最小化剩余自干扰信号功率为准则,讨论了该结构中各抽头参数的最优解,进而分析了可实现的最佳自干扰抑制效果。数值与仿真结果表明,多抽头射频域自干扰抵消结构最佳的自干扰抑制性能与自干扰信号带宽、载波频率以及抽头时延与自干扰信道多径时延之差有关。信号带宽越大,或抽头时延与自干扰信道多径时延之差越大,干扰抑制性能越差;干扰抑制效果随载波频率的增加近似呈周期性振荡。
2025-05-20 18:32:00 1.12MB
1
联想网络同传EDU 7.5.5
2025-05-18 14:27:40 303.65MB 网络 网络同传
1
2023集创赛紫光同创杯一等奖项目
2025-05-11 23:41:14 46.76MB
1
主要适用于在校本科生、研究生毕业设计或期末大作业,基于蒙特卡洛仿真方法论,介绍了卷积码、Turbo码和LDPC码,以相同的码率仿真了3种编码,并对比了其误码率性能(仿真生成在同一张图中),其中ber_compare.m 实现的是作图功能 其他三个文件夹里面的程序是卷积码、turbo码、LDPC码3种编码方式误码率仿真程序 请先运行3个文件夹中的程序,然后再运行ber_compare.m,即可得到图像。 word文档中是实验报告。
2025-04-20 21:06:27 51KB matlab 信道编码
1
内容概要:本文详细介绍了基于PR(比例谐振)控制器的并网逆变器设计及其在实现单位功率因数方面的优势。PR控制器相比传统的PI控制器,在跟踪交流信号时能够消除稳态误差,确保电流与电压同相位。文中通过理论分析、数学模型展示以及具体代码实现,解释了PR控制器的工作原理和应用场景。同时探讨了锁相环(PLL)、谐振项带宽调节等关键技术细节,并提供了实验数据验证其优越性能。 适合人群:从事电力电子、自动化控制领域的工程师和技术人员,尤其是关注并网逆变器设计与优化的专业人士。 使用场景及目标:适用于需要提高并网逆变器性能、改善电能质量和增强系统稳定性的场合。目标是通过采用PR控制器实现高精度的电流控制,达到单位功率因数,从而减少能量损失和提高效率。 其他说明:文章不仅涵盖了理论知识,还给出了具体的实现方法和调试技巧,有助于读者更好地理解和应用这一先进技术。
2025-04-14 15:16:50 516KB
1
采用HFSS软件对1/4波长同轴型微波介质滤波器进行模拟仿真,在此基础上详细讨论谐振器间耦合 系数K,频率漂移系数η以及外界品质因数Qe随端口电极宽度a,耦合孔直径D的变换规律.
2025-04-12 23:32:15 37KB
1
1.13-1.73GHz波导同轴转换仿真,VSWR<1.27 同轴端口馈电,波端口模拟波导口
2024-07-22 15:26:37 481KB HFSS 射频器件
1