基于SVM 的鼾声识别算法.7z 使用SVM分类算法对鼾声进行识别 数据集采用Snoring Data Set 特征提取采用librosa中的Mel Spectrogram计算方法,C++版LibrosaCpp实现 数据集 数据集包含1000个样本,其中包含500个鼾声样本和500个非鼾声样本 特征提取 使用librosa库中的Mel Spectrogram计算方法和短时傅里叶变换(Short-Time Fourier Transform)构造出35维特征向量进行训练 频率:对能量的取值进行分段,取其中的众数作为频率的估计值 平均响度: 首先,你需要获取音频数据的每个样本值 对每个样本值进行平方,得到其能量 对所有样本的能量求平均值,然后取平方根,即为均方根(RMS)值 RMS值可以作为该段音频的平均声音响度的估计。 单次持续时间:单次鼾声持续时间 时域能量:在时域中,音频的能量可以通过信号的振幅平方来表示。对于每个时间窗口,将窗口内的每个样本的振幅平方求和,即可得到该时间窗口的能量值。这可以用来表示音频信号随时间的能量分布 短时傅里叶变换(Short-Time Fourie
2024-07-16 22:38:13 5.25MB 支持向量机
1
基于支持向量机递归特征消除(SVM_RFE)的分类特征选择算法,matlab代码,输出为选择的特征序号。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-06-14 18:29:26 118KB matlab 支持向量机
1
网络文本情感分析方法主要分为两大途径,无监督情感分析方法和有监督情感分析方法[2]。在2002年PANG等学者首次采用电影评论数据建立了使用机器学习的有监督情感分类方法。他分别使用了支持向量机(SVM)、朴素贝叶斯(NB)、最大熵(ME)分类器,二情感分类特征主要采用情感词频[3]。实验表明基于机器学习的有监督分类结果准确率要高于基于传统的无监督方法。文献[4]也提出了一种结合SVM和NB分类器的新模型(NBSVM),这种新的模型在多个数据集都取得了很好的分类效果。有监督网络评论情感分类方法是基于标注训练集语料来进行评论分类的,而标注的语料具有领域依赖性,因此有监督网络评论情感分类效果的好坏与文本领域有直接的关系。在一个领域标注的训练集训练的分类器很可能在另一个领域分类效果并不好。所以,有监督情感分类方法需要在不同领域标注大量不同的训练集,才能取得比较好的分类效果。但是,在众多领域都标注大量训练集是一项十分困难的事情,需要消耗大量的人力物力,已经成为有监督情感分类的瓶颈。
2024-06-13 23:05:47 9.49MB 网络 网络 机器学习 支持向量机
1
支持向量机 SVM 本人已经阅读完,很不错!
2024-06-13 17:43:32 6.64MB 支持向量机
1
包含机器学习、数据挖掘、神经网络,可以应用于各个领域
2024-06-13 17:40:05 6.64MB 支持向量机 机器学习
1
1.运行主函数 2.适合新手 3.一键出图 基于粒子群优化支持向量机数据回归Matlab程序PSO-SVM 多特征输入单输出 基于粒子群优化支持向量机数据回归Matlab程序PSO-SVM 多特征输入单输出 基于粒子群优化支持向量机数据回归Matlab程序PSO-SVM 多特征输入单输出
2024-05-30 16:04:10 61KB matlab 支持向量机 粒子群优化
1
svm支持向量机python代码 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf 支持向量机SVM通俗理解(python代码实现).pdf
2024-05-29 17:17:50 189KB 支持向量机 python
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-23 13:00:58 7.58MB matlab
1
基于支持向量机的数据分类(libsvm)内含matlab完整版代码
2024-05-22 13:40:35 118KB 机器学习 支持向量机
1
svm支持向量机python代码 机器学习语义分割-随机森林,支持向量机,GBC Machine learning semantic segmentation - Random Forest, SVM, GBC.zip
2024-05-21 18:39:18 4.69MB 机器学习 随机森林 支持向量机
1