内容概要:本文介绍了一种改进的视觉Transformer(ViT)模型,重点在于引入了三重注意力机制(TripletAttention)。TripletAttention模块结合了通道注意力、高度注意力和宽度注意力,通过自适应池化和多层感知机(MLP)来增强特征表达能力。具体实现上,首先对输入特征图进行全局平均池化和最大池化操作,然后通过MLP生成通道注意力图;同时,分别对特征图的高度和宽度维度进行压缩和恢复,生成高度和宽度注意力图。最终将三种注意力图相乘并与原特征图相加,形成增强后的特征表示。此外,文章还展示了如何将TripletAttention集成到预训练的ViT模型中,并修改分类头以适应不同数量的类别。; 适合人群:熟悉深度学习和计算机视觉领域的研究人员和技术开发者,尤其是对注意力机制和Transformer架构有一定了解的人群。; 使用场景及目标:①研究和开发基于Transformer的图像分类模型时,希望引入更强大的注意力机制来提升模型性能;②需要对现有ViT模型进行改进或扩展,特别是在特征提取和分类任务中追求更高精度的应用场景。; 阅读建议:本文涉及较为复杂的深度学习模型和注意力机制实现细节,建议读者具备一定的PyTorch编程基础和Transformer理论知识。在阅读过程中可以结合代码逐步理解各个模块的功能和相互关系,并尝试复现模型以加深理解。
2025-05-06 10:07:59 3KB Pytorch 深度学习 图像处理
1
基于MATLAB的遗传算法及其在稀布阵列天线中的应用,毫米波雷达天线,稀疏阵优化,matlab源代码
2025-05-06 10:04:01 1KB matlab
1
基于七自由度冗余机械臂的运动力学建模与优化Matlab代码包,基于七自由度冗余机械臂的SRS构型运动学建模与优化Matlab代码,SRS构型七自由度冗余机械臂运动学建模全套matlab代码 代码主要功能: [1]. 基于臂角参数化方法求解机械臂在给定末端位姿和臂角下的关节角度; [2]. 求解机械臂在给定末端位姿下的有效臂角范围,有效即在该区间内机械臂关节角度不会超出关节限位; [3]. 以避关节限位为目标在有效臂角区间内进行最优臂角的选取,进而获取机械臂在给定末端位姿下的最优关节角度。 购前须知: 1. 代码均为个人手写,主要包含运动学建模全套代码; 2. 代码已经包含必要的注释; 包含原理推导文档,不包含绘图脚本以及urdf; ,SRS构型;七自由度;冗余机械臂;运动学建模;Matlab代码;臂角参数化方法;关节角度求解;有效臂角范围;关节限位避障;最优臂角选取。,基于Matlab的SRS构型七自由度冗余机械臂运动学建模与优化代码
2025-05-06 09:08:24 443KB
1
内容概要:本文详细介绍了利用多目标粒子群算法(MOSO)对电机结构进行优化的方法。主要内容涵盖MOSO函数的构造,包括如何将电机结构参数(如绕组匝数、气隙长度等)作为输入,计算关键性能指标(如效率、转矩等),并通过代价函数综合评价。文中还提供了完整的MATLAB代码示例,演示了从初始化粒子群到迭代寻优直至获得帕累托前沿解的具体步骤。此外,针对实际应用中可能出现的问题给出了优化建议和技术细节,如惯性权重动态调整、边界条件处理等。最后,通过实例展示了该方法的有效性和优越性,证明能够显著提高优化效率并降低成本。 适合人群:从事电机设计及相关领域的工程师、研究人员,特别是希望掌握先进优化算法的应用者。 使用场景及目标:适用于需要同时考虑多个相互冲突的设计目标(如效率、成本、体积等)的复杂电机结构优化任务。通过运用MOSO算法,可以在大量可行解空间中快速定位最优或接近最优的解决方案,从而指导实际产品设计。 其他说明:文章不仅提供了理论解释,还包括详细的代码实现和图形展示,帮助读者更好地理解和应用这一先进技术。对于初学者而言,建议逐步跟随示例练习,熟悉各个模块的功能后再尝试应用于具体项目。
2025-05-05 23:35:33 404KB
1
内容概要:本文针对空中集群网络中面临的两大挑战——UAV(无人驾驶飞行器)任务卸载优化和服务质量保障——进行了深入探讨并提出了两种关键机制。(1)基于动态任务负载和无人机(UAV)路径规划优化的计算任务卸载策略,它考虑了UAV位置和运动预测因素来决定何时何地执行计算任务,以便最大限度地减少资源浪费与数据传输延迟;(2)基于不同时间段变化特性设计的大时间尺度和小时间尺度下灵活高效的网络切片资源共享框架,用以维持系统稳定运行及提高整体效能。 适合人群:对于有兴趣研究或者从事无人机动态网络管理和通信优化的技术专家,以及想要进一步探索该前沿课题的学生群体。 使用场景及目标:适用于希望增强无线通信网性能、改善资源利用情况的场景;其主要目的在于降低空中集群系统的通信成本同时提升响应速度和服务水平。 阅读建议:重点在于理解如何应用提出的机制解决实际问题。注意跟随文章脉络,先从理论上把握新方法的设计思路,再看实验部分验证这些想法的有效性和实用性,最好能复现实验以加深理解和掌握关键技术要点。
2025-05-05 21:41:03 153KB 无线通信 计算机网络
1
《现代优化计算方法(第二版)》一书深入探讨了在优化领域内具有重大影响力的三种算法:禁忌搜索算法、模拟退火算法以及遗传算法。这些算法不仅在理论研究上占有重要地位,而且在实际应用中展现出强大的问题解决能力,尤其是在处理复杂度高、解空间庞大的优化问题时。 ### 禁忌搜索算法 禁忌搜索算法(Tabu Search, TS)是一种基于局部搜索的优化算法,由Glover于1986年提出。它通过引入“禁忌”机制来避免陷入局部最优解,从而能够在更广泛的解空间中进行搜索。TS算法的核心在于动态维护一个禁忌表,记录最近被访问过的解决方案或移动,以防止算法重复探索同一路径,这有助于跳出局部最优,寻找更优的全局解。 ### 模拟退火算法 模拟退火算法(Simulated Annealing, SA)源于固体物理学中的退火过程,由Kirkpatrick等人于1983年首次应用于组合优化问题。SA算法通过模拟金属冷却过程中的物理现象,即随着温度的逐渐降低,原子能量状态的变化概率也会减小,最终达到最低能量状态。在优化问题中,温度对应着算法接受较差解的概率,随着迭代次数的增加,温度逐渐降低,算法更倾向于接受那些能改善目标函数值的解,从而逼近全局最优解。 ### 遗传算法 遗传算法(Genetic Algorithm, GA)是一种启发式搜索算法,灵感来源于自然选择和遗传学原理。GA通过模拟生物进化过程中的遗传、变异和自然选择等机制,对候选解进行编码,并在种群中进行交叉和变异操作,从而不断演化出更优秀的解。GA能够有效处理大规模的、非线性的、多模态的优化问题,尤其适用于没有解析解的问题。 这三种算法各有特点,禁忌搜索算法强调在局部搜索中避免重复,模拟退火算法利用物理过程的模拟来实现全局搜索,而遗传算法则借鉴了生物进化的智慧,通过种群的演化来逼近最优解。它们在解决NP-hard类问题、组合优化问题、调度问题等领域展现出了卓越的性能。 《现代优化计算方法(第二版)》通过对这些算法的详细介绍和实例分析,为读者提供了深入了解优化算法的机会,同时也为实践者提供了丰富的工具箱,帮助他们在各自的专业领域内解决复杂的优化问题。无论是理论研究者还是工程实践者,都能从中获得宝贵的洞见和实用的技术指南。
2025-05-05 20:46:54 10.49MB 优化算法
1
内容概要:本文基于ROS(机器人操作系统)搭建了6自由度机械臂的运动轨迹规划仿真平台。首先利用SolidWorks建立机械臂模型,并通过SW2URDF插件生成URDF文件,完成机器人模型的描述。接着,利用Moveit!的设置助手完成运动规划相关文件的配置,在三维可视化平台Rviz中实现了笛卡尔空间的直线与圆弧插补。路径规划方面,采用RRT(快速扩展随机树)和RRTConnect算法,完成了高维空间和复杂约束下的无碰撞路径规划。仿真结果显示,RRTConnect算法收
1
内容概要:本文详细介绍了如何通过麻雀算法(Sparrow Search Algorithm, SSA)优化最小二乘支持向量机(LSSVM),以提升其在多输入单输出(MISO)回归预测任务中的性能。首先阐述了LSSVM的基本原理及其在处理复杂非线性数据方面的优势,接着讨论了传统LSSVM存在的超参数优化难题。然后重点介绍了麻雀算法的特点及其在优化LSSVM超参数方面的应用,展示了如何通过全局搜索能力克服局部最优问题,提高预测精度和泛化能力。最后,通过多个实际案例验证了该方法的有效性,并提供了完整的Python代码实现,涵盖从数据预处理到模型评估的全过程。 适合人群:对机器学习尤其是回归分析感兴趣的科研人员和技术开发者,以及希望深入了解LSSVM和麻雀算法优化机制的研究者。 使用场景及目标:①适用于需要高精度预测的应用领域,如金融预测、气象预报、能源需求预测等;②通过优化LSSVM的超参数,提高模型的预测精度和泛化能力;③提供一个易于使用的回归预测工具,便于快速部署和应用。 其他说明:本文不仅探讨了理论层面的内容,还给出了具体的代码实现,使读者能够在实践中理解和掌握相关技术。同时,文中提到
1
内容概要:本文介绍了一种利用灰狼优化算法(GWO)优化最小二乘支持向量机(LSSVM)参数的方法。首先解释了GWO的基本原理,即通过模拟狼群捕猎的行为来寻找最优解。文中详细展示了如何将GWO应用于LSSVM的两个重要参数——惩罚参数c和核函数参数g的优化过程中。接着提供了具体的Python和Matlab代码实现,包括适应度函数的设计、狼群位置的更新规则以及完整的优化流程。此外,还给出了实际案例的应用,如轴承故障数据集的预测精度显著提高,并讨论了一些常见的注意事项和技术细节。 适合人群:从事机器学习研究或应用的技术人员,尤其是对超参数优化感兴趣的开发者。 使用场景及目标:适用于需要高效优化LSSVM模型参数的场景,旨在帮助研究人员减少手动调参的时间成本,同时获得更好的模型性能。 其他说明:文中提供的代码可以直接在Windows系统上运行,用户只需准备好自己的数据集并适当调整相关参数即可使用。对于初学者来说,这是一个非常友好的入门级项目,能够快速上手并看到实际效果。
2025-05-04 08:46:54 318KB 机器学习 参数优化 Windows系统
1
内容概要:本文探讨了利用遗传算法解决带有充电桩的电动汽车路径规划问题(VRPTW)。首先介绍了VRPTW的基本概念及其在引入电动汽车和充电桩后的复杂性。接着详细解释了遗传算法的工作原理,包括选择、交叉和变异等操作。随后展示了具体的Matlab代码实现,涵盖参数初始化、初始种群生成、适应度函数、选择操作、交叉操作、变异操作以及主循环等步骤。最后讨论了结果分析方法,并提供了多个实用建议和技术细节,如充电站位置的选择、时间窗惩罚系数的设定等。 适合人群:从事物流与交通领域的研究人员、工程师以及对遗传算法感兴趣的开发者。 使用场景及目标:适用于需要优化电动汽车配送路线的企业和个人,旨在降低运输成本、提高配送效率,同时满足时间窗和服务质量的要求。 其他说明:文中提供的Matlab代码可以帮助读者快速理解和应用遗传算法解决实际问题。此外,还提到了一些常见的陷阱和注意事项,有助于避免常见错误并获得更好的优化效果。
2025-05-02 21:40:24 458KB
1